Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
GH
Xem chi tiết
HH
23 tháng 3 2020 lúc 14:02

AYUASGSHXHFSGDB HAGGAHAJF

Bình luận (0)
 Khách vãng lai đã xóa
SS
Xem chi tiết
TA
24 tháng 7 2017 lúc 22:08

bạn tham khảo thêm cách này nha Shonogeki No Soma

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)

Đặt  \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)

pt đã cho đc viết lại thành

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\)  (kí hiệu [..] mới đúng nha)

- TH1: a = -b hay  \(\left(x-1\right)^3=-x^3\)  \(\Leftrightarrow2x^3-3x^2+3x-1=0\)  \(\Leftrightarrow x=\frac{1}{2}\)  (Nhận)

- TH2: b = -c hay  \(\left(x+1\right)^3=-x^3\)  \(\Leftrightarrow2x^3+3x^2+3x+1=0\)  \(\Leftrightarrow x=-\frac{1}{2}\)  (Nhận)

- TH3: c = -a hay  \(\left(x+1\right)^3=-\left(x-1\right)^3\)  \(\Leftrightarrow x=0\)  (Loại)

KL:  \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

Bình luận (0)
AN
24 tháng 7 2017 lúc 15:31

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)

\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)

Bình luận (0)
TA
24 tháng 7 2017 lúc 15:33

còn cách khác ko alibaba nguyễn?

Bình luận (0)
H24
Xem chi tiết
AN
1 tháng 3 2018 lúc 13:42

\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}-\frac{1}{3x\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(2x^2+6\right)}{\left(x^2-1\right)^3}+\frac{2x^2+6}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow\frac{x}{\left(x^2-1\right)^3}+\frac{1}{3x^3\left(x^2+2\right)}=0\)

\(\Leftrightarrow4x^6+3x^4+3x^2-1=0\)

Đặt \(x^2=a\)

\(\Rightarrow4a^3+3a^2+3a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2+a+1\right)=0\)

\(\Leftrightarrow4a=1\)

\(\Rightarrow4x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Bình luận (0)
PL
27 tháng 2 2018 lúc 20:05

Bài lớp mấy mà khó vậy!Mình ko hiểu!

Bình luận (0)
TD
Xem chi tiết
NT
Xem chi tiết
DH
22 tháng 2 2017 lúc 17:29

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)

\(\Rightarrow x=2\)

Bình luận (0)
NH
22 tháng 2 2017 lúc 17:38

pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

Bình luận (0)
NQ
Xem chi tiết
ML
22 tháng 10 2017 lúc 12:30

Đặt \(a = \frac{x+1}{x-2}, b = \frac{x-2}{x-3}\)

\(pt \Leftrightarrow a^2 + ab = 12b^2 \Leftrightarrow (a-3b)(a+4b) = 0\)

Bình luận (0)
PB
Xem chi tiết
H24
Xem chi tiết
LC
1 tháng 3 2020 lúc 20:06

\(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\frac{1}{2}}{2}\)

\(\Leftrightarrow2x-\frac{x}{2}+\frac{3+x}{4}=6-\frac{1}{2}+\frac{6-x}{6}\)

\(\Leftrightarrow24x-6x+9+3x=72-6+12-2x\)

\(\Leftrightarrow23x=69\)

\(\Leftrightarrow x=3\)

Vậy nghiệm của pt x=3

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NT
Xem chi tiết
NT
7 tháng 4 2018 lúc 21:51

- Các bạn bỏ giùm mình số 2 cuối nhé. Chỉ có 1 số 2 thôi.

Bình luận (0)
PN
8 tháng 4 2018 lúc 8:47

\(\frac{x+2}{x+1}-\frac{3}{2-x}=\frac{-3}{\left(x+1\right)\left(x-2\right)}+2\)(1)

ĐKXĐ : \(x\ne-1;x\ne\pm2\)

Quy đồng và khử mẫu phương trình (1) , ta được :

\(\left(x+2\right)\left(2-x\right)\left(x-2\right)-3\left(x+1\right)\left(x-2\right)=-3\left(2-x\right)+2\left(x+1\right)\left(x-2\right)\left(2-x\right)\)

\(\Leftrightarrow-\left(x+2\right)\left(x-2\right)^2-3\left(x^2-x-2\right)=-6+3x-2\left(x+1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow-\left(x-2\right)\left(x^2-4\right)-3x^2+3x+6=-6+3x-2\left(x^3-3x^2+4\right)\)

\(\Leftrightarrow-x^3+2x^2+4x-8-3x^2+3x+6=-6+3x-2x^3+6x^2-8\)

\(\Leftrightarrow-x^3-x^2+7x-2+6-3x+2x^3-6x^2+8=0\)

\(\Leftrightarrow x^3-7x^2+4x+12=0\)

\(\Leftrightarrow x^3-2x^2-5x^2+10x-6x+12=0\)

\(\Leftrightarrow x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x-6x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x\left(x+1\right)-6\left(x+1\right)\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=2\)(loại) ; \(x=6\)(chọn ) ; \(x=-1\)(loại).

Vậy S={6}.

Bình luận (0)