Giải phương trình
\(x.\frac{3-x}{x+1}. \left(x+\frac{3-x}{x+1}\right)=2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải phương trình \(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)}+\frac{1}{\left(x^2+1\right)}\)
AYUASGSHXHFSGDB HAGGAHAJF
Giải phương trình: \(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}=\frac{1}{3x\left(x^2+2\right)}\)
bạn tham khảo thêm cách này nha Shonogeki No Soma
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Đặt \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)
pt đã cho đc viết lại thành
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\) (kí hiệu [..] mới đúng nha)
- TH1: a = -b hay \(\left(x-1\right)^3=-x^3\) \(\Leftrightarrow2x^3-3x^2+3x-1=0\) \(\Leftrightarrow x=\frac{1}{2}\) (Nhận)
- TH2: b = -c hay \(\left(x+1\right)^3=-x^3\) \(\Leftrightarrow2x^3+3x^2+3x+1=0\) \(\Leftrightarrow x=-\frac{1}{2}\) (Nhận)
- TH3: c = -a hay \(\left(x+1\right)^3=-\left(x-1\right)^3\) \(\Leftrightarrow x=0\) (Loại)
KL: \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)
Giải phương trình:
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}-\frac{1}{3x\left(x^2+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(2x^2+6\right)}{\left(x^2-1\right)^3}+\frac{2x^2+6}{3x^3\left(x^2+2\right)}=0\)
\(\Leftrightarrow\frac{x}{\left(x^2-1\right)^3}+\frac{1}{3x^3\left(x^2+2\right)}=0\)
\(\Leftrightarrow4x^6+3x^4+3x^2-1=0\)
Đặt \(x^2=a\)
\(\Rightarrow4a^3+3a^2+3a-1=0\)
\(\Leftrightarrow\left(4a-1\right)\left(a^2+a+1\right)=0\)
\(\Leftrightarrow4a=1\)
\(\Rightarrow4x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
Bài lớp mấy mà khó vậy!Mình ko hiểu!
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
giải các phương trình sau: a) \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}..\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)
\(\Rightarrow x=2\)
pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
giải phương trình
\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-3}=12\left(\frac{x-2}{x-3}\right)^2\)
Đặt \(a = \frac{x+1}{x-2}, b = \frac{x-2}{x-3}\)
\(pt \Leftrightarrow a^2 + ab = 12b^2 \Leftrightarrow (a-3b)(a+4b) = 0\)
Giải phương trình: \(\left(\frac{x-1}{x+2}\right)^2-\left(\frac{2x+4}{x-3}\right)^2+3.\frac{x-1}{x-3}=0\)
Giải phương trình sau: \(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\left(\frac{1}{2}\right)}{2}\)
\(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\frac{1}{2}}{2}\)
\(\Leftrightarrow2x-\frac{x}{2}+\frac{3+x}{4}=6-\frac{1}{2}+\frac{6-x}{6}\)
\(\Leftrightarrow24x-6x+9+3x=72-6+12-2x\)
\(\Leftrightarrow23x=69\)
\(\Leftrightarrow x=3\)
Vậy nghiệm của pt x=3
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}=\frac{1}{3x\left(x^2+2\right)}\)
giải phương trình
Giải phương trình sau:
\(\frac{x+2}{x+1}-\frac{3}{2-x}=\frac{-3}{\left(x+1\right)\left(x-2\right)}+2\)2
- Các bạn bỏ giùm mình số 2 cuối nhé. Chỉ có 1 số 2 thôi.
\(\frac{x+2}{x+1}-\frac{3}{2-x}=\frac{-3}{\left(x+1\right)\left(x-2\right)}+2\)(1)
ĐKXĐ : \(x\ne-1;x\ne\pm2\)
Quy đồng và khử mẫu phương trình (1) , ta được :
\(\left(x+2\right)\left(2-x\right)\left(x-2\right)-3\left(x+1\right)\left(x-2\right)=-3\left(2-x\right)+2\left(x+1\right)\left(x-2\right)\left(2-x\right)\)
\(\Leftrightarrow-\left(x+2\right)\left(x-2\right)^2-3\left(x^2-x-2\right)=-6+3x-2\left(x+1\right)\left(x^2-4x+4\right)\)
\(\Leftrightarrow-\left(x-2\right)\left(x^2-4\right)-3x^2+3x+6=-6+3x-2\left(x^3-3x^2+4\right)\)
\(\Leftrightarrow-x^3+2x^2+4x-8-3x^2+3x+6=-6+3x-2x^3+6x^2-8\)
\(\Leftrightarrow-x^3-x^2+7x-2+6-3x+2x^3-6x^2+8=0\)
\(\Leftrightarrow x^3-7x^2+4x+12=0\)
\(\Leftrightarrow x^3-2x^2-5x^2+10x-6x+12=0\)
\(\Leftrightarrow x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x-6x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x\left(x+1\right)-6\left(x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=2\)(loại) ; \(x=6\)(chọn ) ; \(x=-1\)(loại).
Vậy S={6}.