Những câu hỏi liên quan
BY
Xem chi tiết
H24
29 tháng 4 2020 lúc 20:16

a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)

\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)

n + 11-12-2
n0-21-3

b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13

c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13
Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
ML
Xem chi tiết
IY
13 tháng 6 2018 lúc 16:58

a) ta có: \(\frac{3n+15}{n+1}=\frac{3n+3+12}{n+1}=\frac{3.\left(n+1\right)+12}{n+1}=3+\frac{12}{n+1}\)

Để 3n+15/n+1 có giá trị nguyên

\(\Rightarrow\frac{12}{n+1}\inℤ\Rightarrow12⋮n+1\)

\(\Rightarrow n+1\inƯ_{\left(12\right)}=\left(1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right)\)

rùi bn thay giá trị của n+1 vào để tìm n nhé!

b) ta có: \(\frac{3n+5}{n-2}=\frac{3n-6+11}{n-2}=\frac{3.\left(n-2\right)+11}{n-2}=3+\frac{11}{n-2}\)

Để 3n+5/n-2 có giá trị nguyên

=> 11/n-2 thuộc z

=> 11 chia hết cho n-2 => n-2 thuộc Ư(11) = (1;-1;11;-11)

c) ta có: \(\frac{2n+13}{n-1}=\frac{2n-2+15}{n-1}=\frac{2.\left(n-1\right)+15}{n-1}=2+\frac{15}{n-1}\)

Để 2n+13/n-1 có giá trị nguyên => 15/n-1 thuộc Z

=> 15 chia hết cho n-1 => n-1 thuộc Ư(15)=(1;-1;3;-3;5;-5;15;-15)

d) ta có: \(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=\frac{3.\left(2n+1\right)+2}{2n+1}=3+\frac{2}{2n+1}\)

Bình luận (0)
VL
Xem chi tiết
VV
Xem chi tiết
ND
6 tháng 12 2020 lúc 9:24

Làm mẫu 2 phần nhé, 2 phần còn lại tương tự, ez lắm!

1) G/s \(\left(n+1;n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> n+1 và n+2 NTCN

3) G/s: \(\left(2n+1;n+1\right)=d\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(n+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\2\left(n+1\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:27

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

Bình luận (0)
NL
Xem chi tiết
NT
8 tháng 11 2023 lúc 13:41

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

Bình luận (0)
CA
Xem chi tiết
NP
Xem chi tiết