tim x
giup mik voi
5x^3-7x^2-15x+21=0
(x-3)^2=4x^20x+25
7x2-2x-5=0
giup mik
5x^3-7x^2-15x+21=0
(x-3)^2=4x^20x+25
7x2-2x-5=0
c: ta có: \(7x^2-2x-5=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{7}\end{matrix}\right.\)
Tìm x
a)(x+12)^2-9x^2=0
b)20x^3-15x^2+7x=45-38x
c)16x^4-40x^3+10x^2=80x^3-20x^2+196x
d)-4.(x-7)+11x=-x+3.(x+5)
e)4x.(x^2-3)+x=4x^3-3x+5
a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6
Bài 1: Tìm x biết
a) 9(4x + 3)2 = 16(3x - 5)2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
c) x5 + x4 + x3 + x2 + x + 1 = 0
Bài 2: Tìm x biết
a) 5x3 - 7x2 - 15x + 21 = 0
b) (x - 3)2 = 4x2 - 20x + 25
c) (x - 1)2 - 5 = (x + 2)(x - 2) - x(x - 1)
d) (2x - 3)3 - (2x + 3)(4x2 - 1) = -24
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
Bài 1
A, 11/24
B, -1
chúc bn học tốt
tìm x bằng cách phân tish đa thức thành nhân tử
a (4x2+2x)(x2-x)+(4x2+6)(x2-x)=0
b 20x3-15x3+7x=45x2-38x
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
tìm x theo phương pháp phân tích thành nhân tử , biết:
a)(4x2+2x)(x2-x)+(4x2+6)(x2-x)=0
b)20x2-15x3+7x=45x2-38x
tìm x
a 5x3-7x2-15x+21=0
b (x-3)2=4x2-20x+25
c x+x2-x3-x4=0
d 2x3+3x2+2x+3=0
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
tìm x:
x(x-5)-4x+20=0
x(x+6)-7x-42=0
x^3-5x^2+x-5=0
x^4-2x^3+10x^3-20x=0
a. x(x-5) -4x+20=0
<=> x(x-5) - 4(x-5)=0
<=> (x-5)(x-4)=0
<=>(x-5)=0 hoặc x-4=0
<=> x=5 hoặc x=4
Vậy x={4;5}
b.tương tự
c. x3-5x2+x-5 =0
<=> x2(x-5) + (x-5) = 0
<=> (x-5) (x2+1) = 0
<=> x-5=0 hoặc x2+1=0(loại vì x2=-1)
<=> x=5
vậy x=5
d. bạn kiểm tra lại đề
Tìm x :
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x^2+6x-7x-42=0\)
\(\Leftrightarrow\left(x^2+6x\right)-\left(7x+42\right)=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-6\end{matrix}\right.\)
c) \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(x-5\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vôlí\right)\\x=5\end{matrix}\right.\)
d) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(10x^2-20x\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^3+10x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x\left(x^2+10\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x^2+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x^2=-10\left(vôlí\right)|x^2\ge0\forall x\end{matrix}\right.\)
a, 3-x=x-5 b, 7x+21=0 c, 0,25x+1,5=0 d, 6,36-5,3x=0
e, 3x+1=7x-11 f, 15-4x=6x+5 g, 2(x+1)=3+2x
h, 3(1-x)+4x-3 = 0
a: =>-2x=-8
hay x=4
b: =>7x=-21
hay x=-3
c: =>0,25x=-1,5
hay x=-6
d: =>5,3x=6,36
hay x=6/5
e: =>-4x=-12
hay x=3
f: =>-10x=-10
hay x=1
g: =>2x+2-3-2x=0
=>-1=0(vô lý)
h: =>3-3x+4x-3=0
=>x=0
a,
\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)
b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)
c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)
a. <=> 2x=8 hay x=4
b.<=> x= -21/7 = -3
c. <=> x= -1,5/ 0,25=-6
d. <=> x= -6,36/-5,3=1,2
e.<=> 4x=12 hay x= 3
f. <=> 10x = 10 hay x = 1
g. <=> 2x +2 = 3 + 2x
<=> 2=3 ( vô lí )
h.<=> 3 - 3x + 4x -3 =0
<=> x=0