Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PN
Xem chi tiết
N1
3 tháng 7 2017 lúc 21:04

GTNN của A:

A=x2+1/x2-x+1=1+x/x2+1-x

=>A>1

suy ra:GTNN cùa A=2 với x=1

Bình luận (0)
TH
11 tháng 10 2017 lúc 21:23

A=2

X=1

Bình luận (0)
NH
Xem chi tiết
KL
Xem chi tiết
LV
Xem chi tiết
AH
25 tháng 7 2024 lúc 23:42

Lời giải:

$M=\frac{x+1}{x^2+x+1}$

$\Leftrightarrow M(x^2+x+1)=x+1$
$\Leftrightarrow Mx^2+x(M-1)+(M-1)=0(*)$

Vì $M$ tồn tại PT $(*)$ luôn có nghiệm.

$\Leftrightarrow \Delta=(M-1)^2-4M(M-1)\geq 0$

$\Leftrightarrow (M-1)(M-1-4M)\geq 0$

$\Leftrightarrow (M-1)(-1-3M)\geq 0$

$\Leftrightarrow (M-1)(3M+1)\leq 0$

$\Leftrightarrow \frac{-1}{3}\leq M\leq 1$
Vậy $M_{\min}=\frac{-1}{3}; M_{\max}=1$

Bình luận (0)
TN
Xem chi tiết
NN
11 tháng 2 2017 lúc 12:31

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

Bình luận (0)
NN
Xem chi tiết
PC
8 tháng 5 2018 lúc 20:12

+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\) 

Dấu "=" <=> x=0

+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)

\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1

Bình luận (0)
TT
Xem chi tiết
LT
12 tháng 6 2018 lúc 18:40

GTNN 

Xét tử : x^4+x^2+5= x^4+2x^2+1 -x^2+4 =(x^2+1)^2 -(x-2)(x+2)

=> GTNN của Biểu thức là 1 <=> x=2 hoặc x= -2

GTLN: Ko có

Bình luận (0)
CD
Xem chi tiết
H24
Xem chi tiết
NL
18 tháng 7 2021 lúc 7:32

\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

\(A_{max}=3\) khi \(x=-1\)

\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)

\(A_{min}=\dfrac{1}{3}\) khi \(x=-1\)

Bình luận (0)