cho a lớn hơn hoặc bằng b . chứng minh 7a-2 lớn hơn hoặc bằng 7b+1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1)Với x>-3.Chứng minh :2x/3 + 9/(x-3)^2 lớn hơn hoặc bằng 1
2)Cho a lớn hơn hoặc bằng 3,ab lớn hơn hoặc bằng 6;abc lớn hơn hoặc bằng 6.Chứng minh rằng a+b+c lớn hơn hoặc bằng 6
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
Cho a lớn hơn hoặc bằng 1 b lớn hơn hoặc bằng 1 chứng minh rằng a căn của B - 1 + b căn của A trừ 1 bé hơn hoặc bằng AB
Chứng minh a2 + b2 lớn hơn hoặc bằng 1/2 với a+b lớn hơn hoặc bằng 1.
Áp dụng BĐT Bunhiacopski, ta có:
a2 + b2 >= (a + b)2/2 >= 12/2 = 1/2 (đpcm)
Dấu bằng xảy ra khi a = b = 1/2
Cho a + b = 1 Chứng minh rằng a^2 + b^2 lớn hơn hoặc bằng 1/2
Cho a + b = 1 Chứng minh rằng a^3 + b^3 + ab lớn hơn hoặc bằng 1 / 2
giải chi tiết nha mình like cho
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b
úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé
2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )
Sử dụng kết quả ở bài trước ta có đpcm
Đẳng thức xảy ra <=> a=b=1/2
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
C6. Cho các số thực dương thoả mãn: ab+1 nhỏ hơn hoặc bằng b Chứng minh rằng : ( a + (1/a^2) ) + ( b^2 + (1/b) ) lớn hơn hoặc bằng 9
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
Gọi vế trái của BĐT cần chứng minh là P:
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)
\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)