CMR:A(n)=3n+63 chia hết cho 72 với N chẵn n thuộc N ; n lớn hơn hoặc bằng 2
CMR: A(n)=3n + 63 chia hết cho 72 ( với n chẵn, n thuộc N, n lớn hơn hoặc bằng 2 )
hiểu dấu ":" là kí hiệu đồng dư nhé
32 : 9 (mod72)
gọi n=2k
do n chẵn nên 3n : 9 (mod 72)
3n+63:9+63:72
=>3n+63 chia hết cho 72
CMR:
3n+63 chia hết cho 72 (n thuộc N,n lớn hơn hoặc bằng 2,n chẵn)
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
tìm n thuộc N để 3^n+63 chia hết cho 72
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
CMR:
a)an - bn chia hết cho (a - b)(a + b) với n chẵn
b) 33n+3 - 26n - 27 chia hết cho 169 với n thuộc N
c) 10n + 18n - 55 chia hết cho 27 với n thuộc N
d) 8.52n + 11.6n chia hết cho 9 với n thuộc N
e) 16n + 12n - 5n - 1 chia hết cho 187 với n thuộc N
1/ Chứng minh rằng với mọi n thuộc N thì 50n + 25 chia hết cho 25 nhưng ko chia hết cho 50
2/ Chứng minh rằng 5 số chẵn liên tiếp thì chia hết cho 10
3/ Tìm n thuộc N
n + 3 chia hết cho n
3n + 3 chia hết cho n
27 - 5n chia hết cho n
CMR: A(n)=3n+63 chia hết cho 72 với n chẵn n e N, n lớn hơn hoặc bằng 2
pls, help me.
Ta có:
+) \(A\left(n\right)=3^n+63⋮9\) với n > = 2
+) Vì n chẵn nên đặt n = 2k và k nguyên dương
\(A\left(n\right)=3^n+63=3^{2k}-1+64\)
Vì \(3^{2k}-1=9^k-1⋮\left(9-1\right)\Rightarrow3^{2k}-1⋮8\) và 64 chia hết cho 8
=> \(A\left(n\right)=3^n+63⋮8\)
Lại có: ( 8; 9) = 1 và 8.9 = 72
=> \(A\left(n\right)⋮72\) với n số tự nhiên chẵn và lớn hơn hoặc bằng 2.
BÀI 1 : cho B = n^2 + n^ 3 ( n thuộc N ) ; B là số chẵn hay số lẻ ?
tìm số dư của phép chia số B cho 2
BÀI 2 : tìm n thuộc N để cho :
a, (n+2)chia hết cho n
b, (3n+5)chia hết cho n
c, (14-3n)chia hết cho n
d,(n+5)chia hết cho (n+1)
e, (3n+4)chia hết cho ( n-1)
f, (2n+1)chia hết cho (16-2n)
Ta có: B=n2+n3=n.(n2+1)
Vì n là số tự nhiên=>n có 2 dạng là 2k và 2k+1
*Với n=2k=>B=n.(n2+1)=2k.(2k2+1) chia hết cho 2=>B chẵn(1)
*Xét n=2k+1=>B=n.(n2+1)=(2k+1).((2k+1)2+1)
=>B=(2k+1).(2k2+2.2k.1+12+1)
=>B=(2k+1).(2k.2k+2.2k+1+1)
=>B=(2k+1).(2.4k+2.2k+2)
=>B=(2k+1).(4k+2k+1).2 chia hết cho 2
=>B chẵn(2)
Từ (1) và (2)=>B là số chẵn
=>B:2(dư 0)
Mình cứ tưởng trên đời này có mỗi mình tuôi là khổ nhất hóa ra còn người khổ hơn tuôi nưa!!! Đò chính là nguyenminhtam
Noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo!!!!!!
cho hỏi lê chí cương n^2+n+3 mình làm ra là n^+n^3 à