Những câu hỏi liên quan
NN
Xem chi tiết
NT
4 tháng 8 2022 lúc 13:13

a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)

b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)

c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)

d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)

e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)

Bình luận (0)
PY
Xem chi tiết
KY
Xem chi tiết
TH
6 tháng 1 2021 lúc 11:23

ĐKXĐ: \(0\le x\le5\).

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).

PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).

+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).

+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).

Vậy...

Bình luận (0)
HP
6 tháng 1 2021 lúc 12:25

ĐK: \(0\le x\le5\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)

\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH2: \(ab+2a+2b=8\)

\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)

\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)

\(\sqrt{5-x}+\sqrt{x}=3\)

\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy ...

Bình luận (0)
BD
Xem chi tiết
H24
10 tháng 8 2020 lúc 18:36

a) 

<=> \(x\left(0,2-1,2\right)+3,7=-6,3\)

<=> \(-x=-10\)

<=> \(x=10\)

b) 

<=> \(x\left(x-1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 

<=> \(2\sqrt{x+1}=8\)

<=> \(\sqrt{x+1}=4\)

<=> \(x=15\)

e) 

<=> \(\orbr{\begin{cases}1-x=\sqrt{2}-0,\left(1\right)\\1-x=0,\left(1\right)-\sqrt{2}\end{cases}}\)

<=> \(\orbr{\begin{cases}1+0,\left(1\right)-\sqrt{2}=x\\x=1+\sqrt{2}-0,\left(1\right)\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
10 tháng 8 2020 lúc 19:49

a) 0,2x + ( -1, 2 )x + 3, 7 = -6, 3

<=> x( 0,2 - 1, 2 ) + 3, 7 = -6, 3

<=> -x = -10

<=> x = 10

b) x2 = x

<=> x2 - x = 0

<=> x( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

c) 0,(12) : 1,(6) = x : 0,(4)

<=> 4/33 : 5/3 = x : 4/9

<=> 4/55 = x : 4/9

<=> x = 16/495

d) \(2\sqrt{x+1}-3=5\)

\(\Leftrightarrow2\sqrt{x+1}=8\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

e) \(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)

\(\Leftrightarrow\left|1-x\right|=\sqrt{2}-\frac{1}{9}\)

\(\Leftrightarrow\left|1-x\right|=\frac{-1+9\sqrt{2}}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=\frac{-1+9\sqrt{2}}{9}\\1-x=\frac{1-9\sqrt{2}}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10-9\sqrt{2}}{9}\\x=\frac{8+9\sqrt{2}}{9}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TN
11 tháng 9 2016 lúc 22:55

\(A=\sqrt{\left(x-2\right)\left(x-1\right)x\left(x+1\right)+5}\)

\(=\sqrt{\left(x^2-x-2\right)\left(x^2-x\right)+5}\)

Đặt \(t=x^2-x\) ta đc:

\(A=\sqrt{\left(t-2\right)t+5}=\sqrt{t^2-2t+5}\)

\(=\sqrt{\left(t-1\right)^2+4}\ge\sqrt{4}=2\)

Dấu = khi \(t=1\Leftrightarrow x^2-x=1\Leftrightarrow x=\pm\frac{1}{2}+\frac{\sqrt{5}}{2}\)

Vậy....

b)\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)

\(=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}\)

\(=\left|x-2\right|+\left|x+3\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2\right|+\left|x+3\right|=\left|x-2\right|+\left|-x-3\right|\ge\left|x-2+\left(-x\right)-3\right|=5\)

Dấu = khi \(\left(x-2\right)\left(x+3\right)\ge0\)\(\Rightarrow-3\le x\le2\)

\(\Rightarrow\hept{\begin{cases}-3\le x\le2\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)

Vậy....

Bình luận (0)
DQ
Xem chi tiết
KK
1 tháng 9 2017 lúc 20:33

1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24

Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)

hay (x2+7x+6)(x2+7x+16)

2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128

Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)

hay (x2+10x+8)(x2+10x+16)

3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144

Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)

Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

Bình luận (0)
BK
Xem chi tiết
SS
26 tháng 3 2016 lúc 21:25

ai đăng bài đi,,đang rảnh tui lm cho

Bình luận (0)
HT
26 tháng 3 2016 lúc 21:29

rảnh thì ngồi cắn móng chân đi

Bình luận (0)
SS
26 tháng 3 2016 lúc 21:34

cắt xong hết rồi

Bình luận (0)
H24
Xem chi tiết
DQ
Xem chi tiết
HN
21 tháng 7 2017 lúc 19:15

1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6

[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6

4x2 - 9 - 4 . ( x2 + 4x + 4) = 6

4x2 - 9 - 4x2 - 16x - 16 = 6

-16x -25 = 6

x = \(-\dfrac{31}{16}\)

Bình luận (0)