Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm số tự nhiên n và số nguyên tố p để (2n + 1)(n -1) = 3.p
Lời giải:
Từ đề bài, kết hợp với $2n+1> n-1$ ta có các TH sau đây:
TH1:
$2n+1=3; n-1=p$
$\Rightarrow n=1; n-1=p\Rightarrow p=0$ (vô lý)
TH2: $2n+1=p, n-1=3\Rightarrow p=9$ (loại)
TH3: $2n+1=3p; n-1=1$
$\Rightarrow 3p=5$ (loại)
Vậy không tồn tại $n,p$ thỏa đề.
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm các số tự nhiên n để 2n + 3 và 4n + 1 là 2 số nguyên tố cùng nhau
tìm các số tự nhiên n để 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
tìm số tự nhiên n để 2n +3 và 4n+1 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để: (n -1)(n2+2n+3) là số nguyên tố
tìm các số tự nhiên n để 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d \(\varepsilon\){ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n \(\varepsilon\)5k
gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d ε{ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n ε 5k
chúc bn hok tốt @+_@
tìm số tự nhiên n để 2n+1 và 9n+4 là hai số nguyên tố cùng nhau