cho a+b+c+d=4. cm: 1/ab +1/cd >=(a^2+b^2+c^2+d^2)/2
a) Cho a+b+c=0. CM:
\(a^4+b^4+c^4=\dfrac{1}{2}\left(a^2+b^2+c^2\right)^2\)
b) Cho a+b+c+d=0. CM:\(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
a ) Ta có : \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+ac+bc\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2c^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)+8abc.0\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Lại có : \(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}=\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}\)
\(=\dfrac{a^4+b^4+c^4+a^4+b^4+c^4}{2}=\dfrac{2\left(a^4+b^4+c^4\right)}{2}\)
\(=a^4+b^4+c^4\left(đpcm\right)\)
b ) \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3+3a^2b+3b^2a+3c^2d+3d^2c=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(-a^2b-b^2a-c^2d-d^2c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[ab\left(c+d\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\left(đpcm\right)\)
Cho 4 điểm A , B , C , D . Biết AB = 2 cm , BC = 2 cm , AC = 5 cm , CD = 1 cm , AD = 6 cm .
Chứng tỏ rằng A , B , C , D thẳng hàng
Bài 1:Cho tỉ lệ thức a/b=c/d.Cm
a)ab/cd=(a+b)^2/(c+d)^2
b)ab/cd=a^2+b^2/c^2+d^2
Bài 2:Cho a/2003=b/2005=c/2007.CM (a-c)^2/4=(a-b)(b-c)
Giúp với chiều nay mình nộp rồi. Ai làm nhanh chính xác mình tick nhiều tick cho. Thề á làm nhanh với nhé.T_T
4) Cho a :b=b :c=c: d=k
Cm:(a^2 + b^2 + c^2).(b^2 + c^2 + d^2) = (ab + bc +cd)^2
Bài 1 Cho a,b,c,d>0 CM 3BĐT sau cùng xảy ra
a+b<c+d
(a+b)(c+d)<ab+cd
(a+b)cd<a+b<ab
Bài 2: Cho x,y>0tm: x3+y3=x-y
CM x2+y2<1
Đề bài đúng mà bạn..có sai đâu...mình tính vẫn ra được kết quả cuối cùng
cho tứ giác ABCD biết ^ A : ^ B : ^ C : ^ D = 1:2:3:4, cm AB//CD
Cho a :b=b :c=c: d=k Cm:(a^2 + b^2 + c^2).(b^2 + c^2 + d^2) = (ab + bc +cd)^2
Ta có : \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\ge\left(\sqrt{a^2b^2}+\sqrt{b^2c^2}+\sqrt{c^2d^2}\right)^2=\left(ab+bc+cd\right)^2\) (áp dụng bđt Schwartz)
Dấu " = " xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Do đó, kết hợp cùng giả thiết suy ra đpcm
1. a/b=a+c/b+d
2. a/3a+b=c/3c+d
3. ab/cd=a^2-b^2/c^2-d^2
4. ab/cd=(a-b)^2/(c-d)^2
Mọi người ưi giúp mik nha😘
Đề bài:cho a/b=c/d chứng minh rằng
Bạn nhấn vào ''Câu hỏi tương tự'' sẽ có đáp án mà bạn cần tìm ^^
Cho 4 điểm A,B,C,D cùng nằm trên 1 đường thẳng sao cho B nằm giữa 2 điểm A và C còn C nằm giữa 2 điểm B và D . Biết rằng AC = 5 cm ; BC = 3cm và AD = 7cm . Chứng minh rằng AB = CD
Ta có : AC=5cm; BC=3cm và AD=7cm
=>CD=AD-AC=7-5=2cm
=>CD=2cm
=>AB=AC-BC=5-3=2cm
=>AB=2cm
=>AB=CD ( vì 2cm=2cm )
vì BC<AC(3<5)=>B nằm giữa A và C nên
AC=AB+BC
=>AB=AC-BC=5-3=2cm
vì AC<AD(5<7)=>C nằm giữa A và D nên
AD=AC+CD
=>CD=AD-AC=7-5=2cm
=>AB=CD(2=2)