Những câu hỏi liên quan
PB
Xem chi tiết
CT
18 tháng 6 2017 lúc 14:58

HS tự chứng minh.

Bình luận (0)
TC
Xem chi tiết
BT
Xem chi tiết
TP
Xem chi tiết
AH
31 tháng 10 2018 lúc 21:02

Lời giải:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3-3ab+1=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)

\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)

Vì $a,b>0$ nên $a+b+1\neq 0$

Do đó:

\(a^2+b^2+1-a-b-ab=0\)

\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)

\(\Rightarrow a=b=1\)

Do đó: \(a^{2018}+b^{2019}=1+1=2\)

Ta có đpcm.

Bình luận (5)
H24
Xem chi tiết
NT
Xem chi tiết
H24
15 tháng 5 2019 lúc 21:41

\(\frac{2^{2019}+1}{2^{2020}+1}< 1\Rightarrow\frac{2^{2019}+1}{2^{2020}+1}< \frac{2^{2019}+\left(1+1\right)}{2^{2020}+\left(1+1\right)}\\ \Rightarrow B< \frac{2^{2019}+2}{2^{2020}+2}\\ \Rightarrow B< \frac{2\left(2^{2018}+1\right)}{2\left(2^{2019}+1\right)}\\ \Rightarrow B< \frac{2^{2018}+1}{2^{2019}+1}\\ \Rightarrow B< A\\ \Rightarrow A>B\left(đpcm\right)\)

Bình luận (0)
BH
22 tháng 5 2019 lúc 11:09

22019+122020+1<1⇒22019+122020+1<22019+(1+1)22020+(1+1)⇒B<22019+222020+2⇒B<2(22018+1)2(22019+1)⇒B<22018+122019+1⇒B<A⇒A>B(đpcm)

Bình luận (0)
H24
Xem chi tiết
PL
Xem chi tiết
AH
11 tháng 3 2019 lúc 17:35

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

Bình luận (0)
AH
11 tháng 3 2019 lúc 17:41

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

Bình luận (0)
AH
11 tháng 3 2019 lúc 17:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

\(1=\frac{2018}{x}+\frac{2019}{y}=\frac{(\sqrt{2018})^2}{x}+\frac{(\sqrt{2019})^2}{y}\geq \frac{(\sqrt{2018}+\sqrt{2019})^2}{x+y}\)

\(\Rightarrow P=x+y\geq (\sqrt{2018}+\sqrt{2019})^2\)

Vậy \(P_{\min}=(\sqrt{2018}+\sqrt{2019})^2\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{2018}}{x}=\frac{\sqrt{2019}}{y}\\ \frac{2018}{x}+\frac{2018}{y}=1\end{matrix}\right.\Leftrightarrow x=\frac{\sqrt{2018}}{\sqrt{2018}+\sqrt{2019}}; y=\frac{\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}}\)

---------------------

Tóm lại, những bài này bạn sử dụng 2 công cụ chính:

BĐT AM-GM (quá quen thuộc)

BĐT Cauchy-Schwarz: \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+...+\frac{a_n^2}{b_n}\ge \frac{(a_1+a_2+...+a_n)^2}{b_1+b_2+...+b_n}\)

Bình luận (0)
DN
Xem chi tiết