Những câu hỏi liên quan
HH
Xem chi tiết
NP
16 tháng 12 2017 lúc 23:48

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

Bình luận (0)
NN
20 tháng 2 2018 lúc 10:14

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Bình luận (0)
NN
20 tháng 2 2018 lúc 10:26

1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)

=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)

Xét \(\Delta ABC\)\(\Delta BAH\)

AC=BC

\(\widehat{BAC}=\widehat{ABH}=90^o\)

cạnh chung AB

=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

Bình luận (1)
TP
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 9 2017 lúc 15:06

Xét tam giác ABC vuông tại A. Gọi K là trung điểm của BC,

Theo chứng minh phần a ta có: KA = KB = KC

Suy ra: KA = BC/2

Vậy tam giác ABC vuông tại A có đường trung tuyến AK bằng nửa cạnh huyền BC.

Bình luận (0)
NA
Xem chi tiết
GN
16 tháng 3 2022 lúc 11:01

Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

ΔAMC=ΔBMH(c.g.c)ΔAMC=ΔBMH(c.g.c)

=>ˆCAM=ˆBHMCAM^=BHM^và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => ˆABH=90oABH^=90o

Xét ΔABCΔABCvàΔBAHΔBAHcó

AC=BC

ˆBAC=ˆABH=90oBAC^=ABH^=90o

cạnh chung AB

=> ΔABC=ΔBAH(c.g.c)ΔABC=ΔBAH(c.g.c)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

Bình luận (0)
GN
16 tháng 3 2022 lúc 11:00

chứng minh cách lớp 7 hay 8 v

 

Bình luận (0)
NH
Xem chi tiết
NM
5 tháng 8 2021 lúc 16:34

https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html

Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình

 

Bình luận (0)
NH
5 tháng 8 2021 lúc 16:37

đây là hình ạ

D A B M C

Bình luận (1)
H24
Xem chi tiết
NT
18 tháng 1 2016 lúc 21:13

A B C H K

(GT,KL tự ghi nhé!)

Vẽ đoạn thẳng AK sao cho \(AH=\frac{AK}{2}\) (1)

Xét tam giác AHB và tam giác KHC có :

AH = AK (Cách vẽ)

AHB = KHC ( 2 góc đối đỉnh )

BH = HC (GT)

\(\Rightarrow\) tam giác AHB = tam giác KHC ( c.g.c)

\(\Rightarrow\) BAH = CKH ( 2 góc tương ứng )

\(\Rightarrow\) AB song song với CK ( cặp góc so le trong bằng nhau)

   Mà AB vuông góc với AC (GT)

\(\Rightarrow\) CK vuông góc với AC

Xét tam giác ABC và tam giác CKA có :

   AB = CK (Do tam giác AHB = tam giác KHC)

   BAC = KCA = 90 độ

  AC chung

\(\Rightarrow\) tam giác ABC = tam giác CKA ( c.g.c )

\(\Rightarrow\) BC = KA (2)

Từ (1) và (2) \(\Rightarrow\) \(AH=\frac{BC}{2}\)

     

 

 

Bình luận (0)
H24
16 tháng 1 2016 lúc 19:52

de et qua thang khung moi khong biet

Bình luận (0)
KN
Xem chi tiết
VT
2 tháng 5 2016 lúc 21:13

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

Chúc thành công

Bình luận (0)
LD
2 tháng 5 2016 lúc 21:12

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

Bình luận (0)
LD
2 tháng 5 2016 lúc 21:14

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 11 2018 lúc 9:08

 Cách khác (theo cách lớp 7):

A B C D 2 1

Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)

Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)

+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)

Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)

+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)

Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)

Bình luận (0)

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Bình luận (0)
H24
16 tháng 11 2018 lúc 9:11

Tham khảo thêm: Câu hỏi của Nguyễn Huỳnh Minh Thư - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
NH
Xem chi tiết
TL
31 tháng 3 2015 lúc 8:16

A B C M

ta chứng minh: BM2 = BC2 - 3/4. AC2

Áp dụng ĐL Pi- ta - go trong tam giác vuông ABM ta có: BM2 = AB2 + AM2 

Trong tam giác vuông ABC có: AB2 = BC2 - AC2 

M là trung điểm của AC nên AM = AC/2

=> BM2 = AB2 + AM2 = BC2 - AC2 + (AC/2)2 = BC2 - AC + AC2/ 4 = BC2 - 3/4. AC (đpcm)

Bình luận (0)