Những câu hỏi liên quan
DV
Xem chi tiết
ST
Xem chi tiết
VT
Xem chi tiết
VD
Xem chi tiết
AH
27 tháng 12 2023 lúc 23:48

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

Bình luận (0)
MT
Xem chi tiết
.
12 tháng 1 2021 lúc 13:53

Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất

=> |x - 2019| + 2021 nhỏ nhất

Ta có: \(\left|x-2019\right|\ge0\)

\(\Rightarrow\left|x-2019\right|+2021\ge2021\)

Dấu "=" xảy ra khi x - 2019 = 0

=> x = 2019

\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)

Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).

Bình luận (0)
 Khách vãng lai đã xóa
AO
Xem chi tiết
EC
13 tháng 12 2019 lúc 15:47

Ta có: A = |x - 2019| + |x - 2020|

=> A = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1

Dấu "=" xảy ra <=> \(\left(x-2019\right)\left(2020-x\right)\ge0\)

<=> \(2019\le x\le2020\)

Vậy MinA = 1 <=> 2019 \(\le\)\(\le\)2020

Bình luận (0)
 Khách vãng lai đã xóa
NA
12 tháng 2 2020 lúc 21:59

Mình giống bạn Edogawa Conan nhé

nhé !

Mình mới đăng kí !

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
7 tháng 1 2024 lúc 10:54

Áp dụng BĐT trị tuyệt đối:

\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)

\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)

\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)

Bình luận (0)
NT
Xem chi tiết
PT
20 tháng 12 2021 lúc 20:35

D

Bình luận (0)
LT
20 tháng 12 2021 lúc 20:36

D

Bình luận (0)
KS
20 tháng 12 2021 lúc 20:38

Ta có |x| \(\ge\) 0 \(\forall\) x

\(\Rightarrow\left|x\right|+2020\ge2020\)

D

Bình luận (0)
HN
Xem chi tiết