Những câu hỏi liên quan
DH
Xem chi tiết
TH
Xem chi tiết
KL
Xem chi tiết
TL
Xem chi tiết
HN
Xem chi tiết
PN
16 tháng 12 2015 lúc 9:41

Đề: Cho  \(a+b+c=1\) và  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)  .  Chứng minh:  \(a^2+b^2+c^2=1\)

                                                                 -----------------------------------------

Từ   \(a+b+c=1\)

\(\Rightarrow\)  \(\left(a+b+c\right)^2=1\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)  \(\left(1\right)\)

Mặt khác, ta lại có:   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)  \(\Leftrightarrow\)  \(\frac{ab+bc+ca}{abc}=0\)  \(\Leftrightarrow\)  \(ab+bc+ca=0\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), suy ra  \(a^2+b^2+c^2=1\)   \(\left(đpcm\right)\)

Bình luận (0)
HQ
Xem chi tiết
NM
14 tháng 12 2015 lúc 20:23

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)

\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)

\(\Leftrightarrow a^2+b^2+c^2=1\)

Bình luận (0)
VD
Xem chi tiết
NK
Xem chi tiết
TN
13 tháng 6 2016 lúc 10:59

Ta biến đổi 1 tí nhé

\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)

\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)

\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)

Cộng vế với vế của (1), (2), (3) suy ra 

\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

\(\Leftrightarrow Dpcm\)

Bình luận (0)
H24
Xem chi tiết