Những câu hỏi liên quan
VM
Xem chi tiết
H24
19 tháng 10 2023 lúc 20:06

\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)

Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)

nên \(A⋮3\).

\(Toru\)

Bình luận (0)
TN
19 tháng 10 2023 lúc 20:08

A=(2+22)+22(2+22)+...+22020(2+22)

A= 6.1+22.6+...+22020.6

A=6(1+22+...+22020) chia hết cho 3

vậy A chia hết cho 3

Bình luận (0)
PA
19 tháng 10 2023 lúc 20:13

A=(2+22)+(23+24)+(25+26)+.......+(22019+22020)+(22021+22022)

A=2.(1+2)+23.(1+2)+25.(1+2)+.......+22019.(1+2)+22021.(1+2)

A=2.3+23.3+25.3+.......+22019.3+22021.3

A=3.(2+23+25+........+22019+22021)

Vì 3⋮3⇒A⋮3

Bình luận (0)
DM
Xem chi tiết
AH
28 tháng 10 2023 lúc 16:43

Lời giải:
$A=(1+2)+(2^2+2^3)+.....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+...+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+....+2^{10})\vdots 3$ (đpcm)

Bình luận (0)
NH
28 tháng 10 2023 lúc 17:07

A = 1 + 2 + 22 + 23 + ... + 211

A = 20 + 21 + 22 + 23 + ... + 211

Xét dãy số: 0; 1; 2; 3;...;11 dãy số này là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Số số hạng của dãy số trên là: (11 - 10) : 1 + 1 = 12 (số hạng)

Vậy A có 12 hang tử nhóm hai hạng tử liên tiếp của A với nhau vì  

12 : 2 = 6 nên:

A = (1 + 2) + ( 22 + 23) +...+ (210 + 211)

A = 3 + 22.(1 + 2) + ...+ 210.(1 + 2)

A = 3 + 22. 3 +...+ 210.3

A = 3.( 1 + 22 +...+ 210)

vì 3 ⋮ 3 nên 3.(1 + 22 + ...+ 210) ⋮ 3 hay A = 1 + 2+ ...+ 211 ⋮ 3(đpcm)

 

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 12 2019 lúc 7:02

a, Ta có:

2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

=  2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100

= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4

=  2 . 31 + 2 6 . 31 + . . . + 2 96 . 31

=  2 + 2 6 + . . . + 2 96 . 31  chia hết cho 31

b, Ta có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5

=  5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6

=  ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6  chia hết cho 6

Ta lại có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150  (có đúng 25 nhóm)

[ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... +  [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]

=  [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... +  [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]

=  ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... +  ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )

=  ( 5 + 5 2 + 5 3 ) . 126 +  ( 5 7 + 5 8 + 5 9 ) . 126 +  ... + ( 5 145 + 5 146 + 5 147 ) . 126

= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... +  ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.

Vậy  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150  vừa chia hết cho 6, vừa chia hết cho 126

 

Bình luận (0)
H24
6 tháng 11 2023 lúc 19:15

Chịu 🤭🤭🤭

Bình luận (0)
H24
14 tháng 12 2024 lúc 18:29

=1872643+8712648-127649817

=9873264+98293:8726

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2019 lúc 4:27

Bình luận (0)
LH
Xem chi tiết
H24
28 tháng 12 2022 lúc 10:41

loading...

Bình luận (0)
LH
Xem chi tiết
AH
31 tháng 12 2023 lúc 14:40

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

Bình luận (0)
AH
31 tháng 12 2023 lúc 14:41

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

Bình luận (0)
NN
Xem chi tiết
TT
Xem chi tiết
LC
Xem chi tiết