Những câu hỏi liên quan
PQ
Xem chi tiết
NT
23 tháng 8 2019 lúc 12:56

Nếu bạn bảo kiểm tra thì lời giải đúng rồi nhé!

Bình luận (0)
UO
Xem chi tiết
H24
24 tháng 1 2017 lúc 22:05

Tiếp

\(=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\left(\frac{x^2+x+1}{2x+1}\right)=\left(\frac{x^2+x+1}{x^2-1}\right)=1+\frac{x+2}{x^2-1}\)

Bình luận (0)
KV
Xem chi tiết
LV
Xem chi tiết
TN
23 tháng 5 2019 lúc 18:45

hỏi j v

Bình luận (0)
GN
Xem chi tiết
QL
Xem chi tiết
NT
2 tháng 12 2016 lúc 21:27

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

\(=\frac{1}{x}\)

Bình luận (0)
DB
2 tháng 12 2016 lúc 21:26

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

 

= \(\frac{1}{x}\)

Bình luận (0)
H24
Xem chi tiết
TH
Xem chi tiết
MV
Xem chi tiết
H24
21 tháng 3 2019 lúc 21:37

1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)=1/3

<=>1/x-1/x+1+1/x+1-1/x+2+1/x+2-1/x+3+1/x+3-1/x+4=1/3

<=>1/x-1/x+4=1/3

<=>x+4/x(x+4)-x/x(x+4) ( quy dong mau ) =1/3

<=>4/x(x+4)=1/3

<=> 4.3=x(x+4) ( nhan cheo )

<=> x(x+4)=12

<=> x^2+4x-12=0

<=>x^2-2x+6x-12=0

<=>x(x-2) + 6(x-2) =0

<=> (x-2)(x+6)=0

<=> x-2 =0 hoac x +6=0

<=>x=2 hoac x= -6

Vay x thuoc ( 2,-6 )

K mk nha !!

Bình luận (0)
H24
21 tháng 3 2019 lúc 21:49

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x\text{+}2\right)}\text{+}\frac{1}{\left(x\text{+}2\right)\left(x\text{+}3\right)}+\frac{1}{\left(x\text{+}3\right)\left(x\text{+}4\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}-\frac{1}{x\text{+}1}\text{+}\frac{1}{x\text{+}1}-\frac{1}{x\text{+}2}\text{+}.....\text{+}\frac{1}{x\text{+}3}-\frac{1}{x\text{+}4}=\frac{1}{3}\)

\(\Rightarrow\)\(\frac{1}{x}-\frac{1}{x\text{+}4}=\frac{1}{3}\)

\(\Rightarrow\frac{x\text{+}4}{x\left(x\text{+}4\right)}-\frac{x}{x\left(x\text{+}4\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{4}{12}\)

\(\Rightarrow x\left(x\text{+}4\right)=12\)

mà x và x+4 cách nhau 4 đơn vị \(\Rightarrow x=2\)và x+4\(=\)6

Vậy \(x=2\)

Bình luận (0)
VT
Xem chi tiết
H24
27 tháng 12 2017 lúc 16:54

quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6

=1\x-1\x+6

=6\x(x+6)

Bình luận (0)
KT
27 tháng 12 2017 lúc 18:27

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)

Bình luận (0)