2) Chứng tỏ rằng với mọi x thỏa mãn -2< x < 2 ; x#-1 biểu thức A luôn có giá trị âm.
Chứng tỏ rằng với mọi x thỏa mãn -2<x<2,x khác -1 phân thức luôn có giá trị âm.
Cho A=1/x-2 +1/x+2 + x^2+1/x^2-4 (x#2,-2)
a, Rút gọn A
b,Chứng tỏ rằng với mọi x thỏa mãn -2<x<2 (x#-1) phân thức luôn có giá trị âm
Cho biểu thức A=\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x < 2,x ≠ -1 phân thức luôn có giá trị âm
Giúp mình gấp với ☹
\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)
Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)
\(b,\) Theo đề, ta có : \(-2< x< 2\)
\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)
\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm
cho biểu thức A= \(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) (x ≠ 2, x ≠ -2)(biểu thức rút gọn là A=\(\dfrac{x-1}{x+2}\))
Chứng tỏ rằng với mọi x thỏa mãn: -2 < x < 2, x ≠ -1 phân thức luôn có giá trị âm
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)
cho biểu thức A=1/x-2+1/x+2+x^2+1/x^2-4 ( với x khác cộng trừ 2)
a) rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2<x<2, x khác -1 phân thức luôn có giá trị âm.
Cho biểu thức P=\(\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
a) Rút gọn P
b) Chứng tỏ rằng P<0 với mọi x thỏa mãn -2<x<2 và x khác 1
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
giải hộ mình bài này với:
chứng tỏ rằng với mọi x thỏa mãn -2<x<2,x\(\ne\)-1
c1 Tìm số nguyên tố x thỏa mãn :x^2-4x-21=0
c2/ \(y=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác +-2
a/Rút gọn biểu thức Y
b/chứng tỏ rằng mọi x thỏa mãn -2<x<2, x khác-1 biểu thức A luôn có giá trị âm