Những câu hỏi liên quan
TO
Xem chi tiết
PL
Xem chi tiết
KT
5 tháng 8 2018 lúc 7:55

Áp dụng BĐT GTTĐ ta có:   

\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)

     \(\ge\)\(\left|x-2002+2001-x\right|=1\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-2002\right)\left(2001-x\right)\ge0\)\(\Leftrightarrow\)\(2001\le x\le2002\)

Vậy MIN \(M=1\)khi  \(2001\le x\le2002\)

Bình luận (0)
HY
Xem chi tiết
LA
2 tháng 3 2017 lúc 21:13

ta thấy:  (x-1)^2 >hoặc =0

             (y+3)^2 >hoặc = 0

suy ra (x-1)^2+ (y+3)^2 > hoac = 0

suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5

Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5

Vậy M đạt giá trị nhỏ nhất =5

Bình luận (0)
NP
Xem chi tiết
DH
14 tháng 7 2018 lúc 9:57

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)

                                         <=> (x+1)(y-2) lớn hơn hoặc bằng 0

<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0

       x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0

<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2

<=> x lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1

Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1

Bình luận (0)
DH
Xem chi tiết
NT
17 tháng 8 2021 lúc 13:44

Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

Bình luận (0)
H24
Xem chi tiết
NC
Xem chi tiết
SG
27 tháng 8 2016 lúc 12:03

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

Bình luận (0)
LA
27 tháng 8 2016 lúc 12:07

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

Bình luận (0)
TH
27 tháng 8 2016 lúc 12:15

1﴿ Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

k nha bị âm r

Bình luận (0)
H24
Xem chi tiết
NA
31 tháng 3 2017 lúc 20:34

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

Bình luận (0)
HQ
31 tháng 3 2017 lúc 20:42

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

Bình luận (0)
TM
31 tháng 3 2017 lúc 22:15

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)

Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)

=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Bình luận (0)
CD
Xem chi tiết
ND
8 tháng 11 2015 lúc 15:58

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

Bình luận (0)
PK
8 tháng 11 2015 lúc 15:59

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

Bình luận (0)