Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
NA
19 tháng 12 2020 lúc 15:19

Iam pire thank 

Bình luận (0)
 Khách vãng lai đã xóa
LT
1 tháng 10 2024 lúc 20:54
Ta có: 2^31 = (2^3)^10 * 2 3^21 = (3^2)^10 * 3 So sánh: 2^3 = 8 < 9 = 3^2 Vì 8^10 * 2 < 9^10 * 3 nên 2^31 < 3^21. vậy2^31 > 3^21.
Bình luận (0)
LT
1 tháng 10 2024 lúc 20:56
Ta có: 3^210 = (3^3)^70 = 27^70 2^350 = (2^5)^70 = 32^70 Ta thấy 32 > 27 Vì 32^70 > 27^70 nên 2^350 > 3^210
Bình luận (0)
NH
Xem chi tiết
DH
3 tháng 4 2016 lúc 8:58

Có : 

3210 = ( 33 )70 = 2770 ; 2350 = ( 25 )70 = 3270

Vì 2770 < 3270 => 3210 < 2350

Bình luận (0)
BA
3 tháng 4 2016 lúc 9:04

Ta có : \(3^{210}=\left(3^3\right)^{70}=27^{70}\)

           \(2^{350}=\left(2^5\right)^{70}=32^{70}\)

Vì 32 > 27 => \(32^{70}>27^{70}\)

=> 3210 < 2350

k nha bạn

Bình luận (0)
NT
3 tháng 4 2016 lúc 9:11

\(3^{210}=\left(3^3\right)^{70}=9^{70}\)

\(2^{350}=\left(2^5\right)^{70}=32^{70}\)

Vì 9<32 nên\(3^{210}<2^{350}\)

Bình luận (0)
PT
Xem chi tiết
LT
13 tháng 12 2017 lúc 17:21

Ta có:

\(3^{210}=\left(3^3\right)^{70}=27^{70}\) (1)

\(2^{350}=\left(2^5\right)^{70}=32^{70}\)(2)

Sở dĩ: \(32^{70}>27^{70}\)

Nên từ (1) và (2) suy ra:\(3^{210}< 2^{350}\)

Bình luận (0)
LT
1 tháng 10 2024 lúc 20:46

đúng

Bình luận (0)
TT
Xem chi tiết
YN
29 tháng 2 2020 lúc 10:03

Bạn ơi câu b bạn vt thiếu đề r

Chứng tỏ j v ??

Bình luận (0)
 Khách vãng lai đã xóa
NY
29 tháng 2 2020 lúc 10:07

a,  \(3^{210}\) và \(2^{350}\)

Ta có \(\hept{\begin{cases}3^{210}=\left(3^3\right)^{70}=27^{70}\\2^{350}=\left(2^5\right)^{70}=32^{70}\end{cases}}\)

Mà 32 > 27 > 0

\(\Rightarrow32^{70}>27^{70}\)

\(\Rightarrow2^{350}>3^{210}\)

Vậy \(3^{210}< 2^{350}\)

b, Thiếu đề ròi

~~~~~ Học tốt ~~~~~~~

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
NM
15 tháng 2 2016 lúc 18:18

2350<3210

Vì cơ số lớn thì lũy thừa đó cũng lớn

Ủng hộ em nha

Bình luận (0)
FT
15 tháng 2 2016 lúc 18:19

 3^210 < 2^350

Ủng hộ đê 

Bình luận (0)
TD
15 tháng 2 2016 lúc 18:23

2^350=(2^5)^70=32^70(1)

3^210=(3^3)^70=27^70(2)

Từ 1 và 2 suy ra 2^350>3^210

Bình luận (0)
LV
Xem chi tiết
VH
9 tháng 11 2015 lúc 15:29

\(3^{210}=\left(3^3\right)^{70}=27^{70}\)

\(2^{350}=\left(2^5\right)^{70}=32^{70}\)

\(27^{70}<32^{70}\) nên 

Bình luận (0)
CT
Xem chi tiết
HD
28 tháng 1 2018 lúc 15:53

a) 3200=3(3.100)=9100

2300=2(3.100)=8100

vi 8100<9100nen 3200>2300

b)7150=71(2.25)=504125

3775=37(3.25)=5065325

vay 3775>7150

c)3210=3(3.70)=970

2350=2(5.70)=3270

vay 2350>3210

Bình luận (0)
TM
28 tháng 1 2018 lúc 15:48

\(^{3^{200}>2^{300}}\)

Bình luận (0)
KJ
Xem chi tiết
NT
Xem chi tiết
H9
5 tháng 11 2023 lúc 13:21

Ta có:

\(3^{210}=\left(3^3\right)^{70}=27^{70}\)

\(2^{350}=\left(2^5\right)^{70}=32^{70}\)

Mà: \(32>27\)

\(\Rightarrow32^{70}>27^{70}\)

\(\Rightarrow2^{350}>3^{210}\)

Bình luận (0)