Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 12 2019 lúc 4:00

Ta có: S A B C  = 1/2.AB.AC = 1/2.21.28 = 294 ( c m 2 )

Vì △ ABC và  △ ADB có chung đường cao kẻ từ đỉnh A nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy S A D C = S A B C - S A B D  = 294 – 126 = 168( c m 2 )

Bình luận (0)
H24
Xem chi tiết
HD
27 tháng 3 2022 lúc 9:30

tôi ko biết làm

Bình luận (1)
KK
27 tháng 3 2022 lúc 9:32

undefined

tham khảo

Bình luận (3)
PB
Xem chi tiết
CT
21 tháng 12 2019 lúc 8:01

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225  

Suy ra: BC = 35 (cm)

Vì AD là đường phân giác của ∠ (BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (t/chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC – BD = 35 – 15 = 20cm

Trong ΔABC ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)
TL
Xem chi tiết
VD
19 tháng 3 2022 lúc 15:19

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)

Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)

\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

Bình luận (4)
SW
Xem chi tiết
H24
6 tháng 4 2023 lúc 20:29

Xét ΔABC vuông tại A, áp dụng định lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

         \(=21^2+28^2\)

         \(=1225\)

->\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là tia phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{21}{BD}=\dfrac{28}{CD}=\dfrac{21+28}{35}=\dfrac{7}{5}\)

\(BD=\dfrac{21.5}{7}=15\left(cm\right)\)

\(CD=\dfrac{28.5}{7}=20\left(cm\right)\)

 

Bình luận (0)
NT
6 tháng 4 2023 lúc 20:24

loading...  

Bình luận (1)
LB
Xem chi tiết
TL
Xem chi tiết
NT

a: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)

mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

nên \(AH\cdot BC=AB\cdot AC\)

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=21^2+28^2=1225\)

=>\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

 mà DB+DC=BC=35cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)

=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)

 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2017 lúc 7:07

Bình luận (0)
NV
Xem chi tiết