Cho ∆ABC có AB < AC, AD là tia phân giác của góc BAC (DBC).Chứng minh CD>DB
Cho tam giác ABC có AB< AC, AD là tia phân giác của góc BAC (D€ BC) Chứng minh rằng
a,Góc ADB< góc ADC
b, CD> DB
a) Trong \(\Delta ABC\),do AB < AC(gt) nên \(\widehat{C}< \widehat{B}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)
\(\widehat{ADB},\widehat{ADC}\)theo thứ tự là góc ngoài tại đỉnh D của \(\Delta ADC,\Delta ADB\) ta có :
\(\hept{\begin{cases}\widehat{ADB}=\widehat{C}+\widehat{A_1}\left(1\right)\\\widehat{ADC}=\widehat{B}+\widehat{A_2}\left(2\right)\end{cases}}\)
Vì \(\widehat{C}< \widehat{B}\),còn \(\widehat{A_1}=\widehat{A_2}\)(gt) , do đó từ 1 và 2 => \(\widehat{ADB}< \widehat{ADC}\)
b) Do AB < AC(gt),trên cạnh AC lấy điểm E sao cho AE = AB
Xét \(\Delta ADB\) và \(\Delta ADE\)có :
AD chung
\(\widehat{DAB}=\widehat{DAE}\)
AB = AE(gt)
=> \(\Delta ADB=\Delta ADE\left(c.g.c\right)\)
Nên \(\widehat{AED}=\widehat{B}\) mà \(\widehat{AEB}+\widehat{DEC}=180^0\)(2 góc kề bù),do đó \(\widehat{B}+\widehat{DEC}=180^0\left(3\right)\)
Mặt khác \(\Delta ABC\)thì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\), do đó \(\widehat{B}+\widehat{C}< 180^0\left(4\right)\)
Từ 3 -> 4 ta có \(\widehat{DEC}>\widehat{C}\)
Trong \(\Delta DEC\)ta có DE < DC,nhưng DE = DB(cạnh tương ứng của hai tam giác bằng nhau : \(\Delta ADB=\Delta ADE\))
Vậy DB < DC hay DC > DB
Cho tam giác ABC có AB< AC, AD là tia phân giác của góc BAC (D€ BC) Chứng minh rằng
a,Góc ADB< góc ADC
b, CD> DB
a, Xét △ABD và △ACD có:
AB=AC(gt)AB=AC(gt)
Aˆ1=Aˆ2A^1=A^2 (vì AD là phân giác của ∠A)
AD chung
⇒ΔABD=ΔACD(c.g.c)⇒ΔABD=ΔACD(c.g.c)
Vậy ΔABD=ΔACD(đpcm)ΔABD=ΔACD(đpcm)
b, Vì △ABD=△ACD (chứng minh trên) nên ta có:
Bˆ=CˆB^=C^ (hai góc tương ứng)
Vậy Bˆ=Cˆ(đpcm)B^=C^(đpcm)
c, Vì △ABD=△ACD (chứng minh trên) nên ta có:
Dˆ1=Dˆ2D^1=D^2 (hai góc tương ứng)
Mà Dˆ1+Dˆ2=1800D^1+D^2=1800 (kề bù)
⇒Dˆ1=Dˆ2=18002=900⇒D^1=D^2=18002=900
Vậy AD⊥BC(đpcm)
3456-6787=
Cho tam giác ABC có AB< AC, AD là tia phân giác của góc BAC (D thuộc BC). Chứng minh rằng
a,Góc ADB< góc ADC
b,CD> DB
Cho tam giác ABC có AB < AC, AD là tia phân giác của góc BAC (Dthuộc BC). Chứng minh rằng:
a) góc ADB < góc ADC;
b) CD > DB.
Tại sao mà nói AD là tia phân giác rồi mà còn CD > DB ????
Cho tam giác ABC , trên tia đối của tia AC lấy D sao cho AD=AB . Kể tia phân giác của góc BAC [e thuộc BC ] . CHứng minh DB song song AE
cho tam giác ABC có AB = AC. Kẻ tia phân giác AM của góc BAC ( M thuộc BC )a. Chứng minh : Tam giác BAM = tam giác CAM
b. Chứng minh : AM vuông góc BC
c. Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm D sao cho DB = DC. Chứng minh rằng : AD là trung trực BC
Cho tam giác ABC. Điểm D nằm trên cạnh BC thỏa mãn DB/DC=AB/AC khác 1. Chứng minh rằng AD là tia phân giác của góc BAC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB = ADC
b) AD là tia phân giác của góc BAC
c) AD vuông góc BC
Cho tam giác ABC có AD là tia phân giác của góc BAC ( D thuộc BC ) . Chúng minh rằng \(\frac{DB}{DC}=\frac{AB}{AC}.\)
Qua đỉnh B vẽ đường thẳng song song với AC, cắt đường thẳng AD tại điểm E.
Ta có :
\(\widehat{BAE}=\widehat{CAE}\) ( gt )
Vì \(BE\)//\(AC\),nên \(\widehat{BEA}=\widehat{CAE}\) ( so le trong )
\(\Rightarrow\widehat{BAE}=\widehat{BEA}\).
Do đó : \(\Delta ABE\) cân tại B .
\(\Rightarrow BE=AB.\)(1)
Áp dụng hệ quả của định lí Ta-lét đối với \(\Delta DAC\),ta có : \(\frac{DB}{DC}=\frac{AB}{AC}.\) (2 )
Từ (1 ) (2) \(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}.\)