Những câu hỏi liên quan
LA
Xem chi tiết
BL
Xem chi tiết
EC
16 tháng 8 2019 lúc 10:08

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

Bình luận (0)
HS
16 tháng 8 2019 lúc 10:20

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

Bình luận (0)
DV
16 tháng 8 2019 lúc 10:24

cho mình

Bình luận (0)
MH
Xem chi tiết

\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

_Tần vũ_

Bình luận (0)

\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(\Leftrightarrow3x=\frac{1}{6}\)

\(\Leftrightarrow x=\frac{1}{18}\)

_Tần Vũ_

Bình luận (0)
XO
7 tháng 7 2019 lúc 21:49

a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=0+\frac{9}{25}\)

\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{3^2}{5^2}\)

\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Rightarrow\hept{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=\frac{3}{5}-\frac{3}{5}\\2x=-\frac{3}{5}-\frac{3}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=0\\2x=\frac{-6}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0:2\\x=-\frac{6}{5}:2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

b) \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Rightarrow3\left(3x-\frac{1}{2}\right)^3=0-\frac{1}{9}\)

\(\Rightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}:3\)

\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1^3}{3^3}\right)\)

\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Rightarrow3x-\frac{1}{2}=-\frac{1}{3}\)

\(\Rightarrow3x=-\frac{1}{3}+\frac{1}{2}\)

\(\Rightarrow3x=\frac{1}{6}\)

\(\Rightarrow x=\frac{1}{6}:3\)

\(\Rightarrow x=\frac{1}{18}\)

Bình luận (0)
AJ
Xem chi tiết
MS
6 tháng 6 2016 lúc 15:51

\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)

 TH1:   \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)

TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)

Bình luận (0)
NT
6 tháng 6 2016 lúc 15:51

\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)

\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)

\(\Rightarrow x=\frac{2}{5}\)

\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)

\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)

\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)

\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)

\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)

\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)

\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)

\(\Rightarrow3x=\frac{1}{9}\)

\(\Rightarrow x=\frac{1}{27}\)

\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)

\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)  \(\Rightarrow\)  \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)  \(\Rightarrow\)  \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)

Bình luận (0)
NT
6 tháng 6 2016 lúc 15:56

Bổ sung câu a: \(\Rightarrow\) \(\left[\begin{array}{nghiempt}\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\\\left(x+\frac{1}{5}\right)^2=\left(-\frac{3}{5}\right)^2\end{array}\right.\)\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\) \(\Rightarrow\)  \(\left[\begin{array}{nghiempt}x=\frac{2}{5}\\x=-\frac{4}{5}\end{array}\right.\)

Bình luận (0)
MT
Xem chi tiết
DH
26 tháng 6 2018 lúc 15:23

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình

Bình luận (0)
TD
Xem chi tiết
HD
Xem chi tiết
VC
Xem chi tiết
VD
Xem chi tiết