Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng:
ab+bc+ca< 2(ab+bc+ca)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
a^2+b^2+c^2=ab+bc+ac
=>2a^2+2b^2+2c^2=2ab+2bc+2ac
<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a-b=b-c=c-a=0
=>a=b;b=c;c=a
=>a=b=c
=>tam giác abc là tam giác đều
Cho tam giác ABC có độ dài ba cạnh là a, b, c và ( a + b + c )^2 = 3( ab + bc + ca ). Chứng minh tam giác ABC đều.
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh (b - c)2 < a2
b) Từ đó suy ra: a2 + b2 + c2 < 2(ab + bc + ca)
a) Vì a, b, c là độ dài 3 cạnh của một tam giác
⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)
⇒ a + c – b > 0 và a + b – c > 0
Ta có: (b – c)2 < a2
⇔ a2 – (b – c)2 > 0
⇔ (a – (b – c))(a + (b – c)) > 0
⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).
Vậy ta có (b – c)2 < a2 (1) (đpcm)
b) Chứng minh tương tự phần a) ta có :
( a – b)2 < c2 (2)
(c – a)2 < b2 (3)
Cộng ba bất đẳng thức (1), (2), (3) ta có:
(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2
⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2
⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2
⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).
cho a,b,c là độ dài ba cạnh của một tam giác .Chứng minh rằng: 2(ab+bc+ca)>a2+b2+c2
: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)
\(ab+bc=b\left(a+c\right)>b.b=b^2\)
\(bc+ca=c\left(a+b\right)>c.c=c^2\)
\(ca+ab=a\left(b+c\right)>a.a=a^2\)
\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
bị đặc đặc cái tên shinichi koudo chú có hình shinichi đâu
Cho a,b,c là độ dài 3 cạnh của một tam giác chứng minh :
ab + bc + ca <= a2 +b2 +c2<= 2(ab+bc+ca)
ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
a−b<c<=>a2+b2−2ab<c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
b−c<a<=>b2+c2−2bc<a2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
a−c<b<=>a2+c2−2ac<b2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
(đpcm)Bài này khó lắm tớ mới làm có vế trái thôi
cho a ,b ,c là độ dài 3 cạnh tam giác . Chứng minh (a + b + c)^2 < 4(ab+ bc + ca)
a,b,c là độ dài 3 cạnh của 1 tam giác nên:
\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)
Cộng từng vế của các BĐT trên:
\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)
\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)
cho ABC có góc B = 60 độ , góc A nhỏ hơn góc A .
a) chứng minh AB nhỏ hơn BC
b) lấy D trên BC sao cho BD=BA . Chứng minh tam giác ABD đều
c) so sanh s độ dài các cạnh AB , BC,CA
đề bài sai bn ơi sao góc A lại nhỏ hơn góc A
a,c: SỬa đề. gó A<góc C
Vì góc A<góc C
mà góc A+góc C=120 độ
nên góc A<góc B<góc C
=>AB>BC
b: Xét ΔBAD có BA=BD và góc ABD=60 độ
nên ΔBAD đều
Chứng minh bđt :a2+b2+c2<2(ab+bc+ca) với a,b,c là độ dài ba cạnh của 1 tam giác. TKS các bạn.
Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:
\(b^2< ab+bc;c^2< ac+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)
Cho a,b,c là độ dài của ba cạnh tam giác.
CMR: ab + bc + ca\(\le a^2+b^2+c^2\)< 2.(ab + bc + ca).
Ta có : \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ac\right)\le2\left(a^2+b^2+c^2\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Vì BĐT cuối luôn đúng nên ta có : \(a^2+b^2+c^2\ge ab+bc+ac\)
Theo Bất đẳng thức tam giác ta có :
\(a< b+c\Rightarrow a.a< a\left(b+c\right)\Leftrightarrow a^2< ab+ac\) (1)
\(b< a+c\Rightarrow b.b< b\left(a+c\right)\Leftrightarrow b^2< ab+bc\)(2)
\(c< a+b\Rightarrow c.c< c\left(a+b\right)\Leftrightarrow c^2< ac+bc\)(3)
Cộng (1) , (2) , (3) theo vế ta được : \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Từ đó suy ra đpcm
Nếu em lên lớp 7 thì em sẽ giúp
Nguyễn Thị Ngọc Ánh k lm thì biến đừng hòng kiếm