Những câu hỏi liên quan
KT
Xem chi tiết
A6
27 tháng 4 2018 lúc 19:30

bạn thi hsg ak bài nay dễ mak

có 4m^2+m=5n^2+n

<=>m-n+5m^2-5n^2=m^2

<=>(m-n)(5m+5n+1)=m^2         (1)

gọi ƯCLN(m-n;5m+5n+1)=d ta c/m d=1

có m-n chia hết d; m,n là các số tự nhiên

<=>5m-5n chia hết d

và có 5m+5n+1 chia hết d

=>10m+1 chia hết d                          (2)

(1)=> m^2 chia hết cho d 

=>m chia hết d (m là số tự nhiên)

=>10m chia hết cho d                        (3)

từ (2),(3)=>1 chia hết cho d

=>d =1                                              (4)

từ (1),(4)=>đpcm.

bài này phải áp dụng kiến thức lớp 6 vào .

Bình luận (0)
A6
27 tháng 4 2018 lúc 19:37

mik nhầm chút

(1)=> m^2 chia hết d^2

Bình luận (0)
TT
Xem chi tiết
TL
28 tháng 10 2015 lúc 5:23

4m+ m = 5n+ n <=> (5m2 - 5n2) + (m - n) = m<=> 5.(m - n).(m + n) + (m - n) = m2

<=> (m - n).(5m + 5n + 1) = m2  (1)

Gọi d = ƯCLN (m- n; 5m + 5n + 1) 

=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d

=> m= (m - n).(5m + 5n + 1) chia hết cho d2

=> m chia hết cho d

lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d

10m chia hết cho d nên 1 chia hết cho d 

=> m - n và 5m + 5n + 1 nguyên tố cùng nhau    (2)

Từ (1)(2) => m - n; 5m + 5n + 1 đều là số chính phương

Bình luận (0)
H24

Ta có:

4m+ m

= 5n+ n

<=> (5m- 5n2) + (m - n) = m

<=> 5.(m - n).(m + n) + (m - n) = m2

<=> (m - n).(5m + 5n + 1) = m2  (*)

Gọi d = ƯCLN (m- n; 5m + 5n + 1) 

=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d

=> m= (m - n).(5m + 5n + 1) chia hết cho d2

=> m chia hết cho d

Ta lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d

10m chia hết cho d nên 1 chia hết cho d 

=> m - n và 5m + 5n + 1 nguyên tố cùng nhau    (**)

Từ (*)(**) => m - n; 5m + 5n + 1 đều là số chính phương

hok tốt

Bình luận (0)
SW
Xem chi tiết
TT
Xem chi tiết
H24
26 tháng 10 2015 lúc 16:37

Mk muốn giúp bạn lắm nhưng mà chưa học đến, sory nha

Bình luận (0)
PT
26 tháng 10 2015 lúc 16:53

4m2+m=5m2+n suy ra m= 5m2+n-4m2= m2+n

ta có m-n

m2+n -n=m2 là một số chính phương

 

Bình luận (0)
TD
26 tháng 10 2015 lúc 16:56

mình chưa học đâu . sorry

Bình luận (0)
NC
Xem chi tiết
NK
3 tháng 9 2021 lúc 9:07

4m2+m=5n2+n

{=}5m2+m=5n2+n+m2

{=}5(m2-n2)+(m-n)=m2

{=}(m-n)(5m+5n+1)=m2

Bình luận (0)
 Khách vãng lai đã xóa
NK
3 tháng 9 2021 lúc 8:48

là sao

Bình luận (0)
 Khách vãng lai đã xóa
NC
3 tháng 9 2021 lúc 8:50

sao gì ??????

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LH
Xem chi tiết
LC
Xem chi tiết
KS
20 tháng 11 2019 lúc 16:10

Ta có : 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)

Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
BH
Xem chi tiết
DN
Xem chi tiết
PN
3 tháng 4 2016 lúc 21:47

Để giải được bài toán sau thì ta liên tưởng đến một tính chất rất đặc biệt và hữu ích được phát biểu như sau:

\("\) Nếu  \(a,b\)  là hai số tự nhiên nguyên tố cùng nhau và  \(a.b\)  là một số chính phương thì \(a\)  và  \(b\) đều là các số chính phương  \("\)

Ta có:

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow\)  \(4m^2+m-5n^2-n=0\)

\(\Leftrightarrow\)  \(5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow\)  \(5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\)  \(\left(m-n\right)\left(5m+5n+1\right)=m^2\)  \(\left(\text{*}\right)\)

Gọi  \(d\)  là ước chung lớn nhất của  \(m-n\)  và   \(5m+5n+1\)  \(\left(\text{**}\right)\), khi đó:

\(m-n\)  chia hết cho  \(d\)   \(\Rightarrow\)  \(5\left(m-n\right)\)  chia hết cho  \(d\)

\(5m+5n+1\)  chia hết cho  \(d\)

nên   \(\left[\left(5m+5n+1\right)+5\left(m-n\right)\right]\)  chia hết cho  \(d\)

\(\Leftrightarrow\)   \(10m+1\)  chia hết cho  \(d\)   \(\left(1\right)\)

Mặt khác, từ  \(\left(\text{*}\right)\), với chú ý cách gọi ở \(\left(\text{**}\right)\), ta suy ra được:  \(m^2\)  chia hết cho  \(d^2\)

Do đó,  \(m\)  chia hết cho  \(d\)

  \(\Rightarrow\)   \(10m\)  chia hết cho  \(d\)   \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), ta có  \(1\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(d=1\)

Do đó,  \(m-n\)  và  \(5m+5n+1\)  là các số tự nhiên nguyên tố cùng nhau  

Kết hợp với  \(\left(\text{*}\right)\)  và điều mới chứng minh trên, thỏa mãn tất cả các điều kiện cần thiết ở tính chất nêu trên nên ta có đpcm

Vậy,   \(m-n\)  và  \(5m+5n+1\)  đều là các số chính phương.

Bình luận (0)