Chứng minh rằng X và Y là hai số tự nhiên liên tiếp , biết :
X = 1 + 2 + 22 + ... + 2100
Y = 2201
Chứng minh rằng các số x, y là hai số tự nhiên liên tiếp biết:
x= 1+2+2^2+2^4+2^6+...+2^2010; y= 2^2011
x = 1+2+2^2+2^4+2^6+...+2^2010
2x = 2+2^2+.....+2^2011
2x-x = 2^2011 - 1 = x
y = 2^2011
=> ĐCCM
cho x=1+2+2^2+2^3+......................................+2^2014+2^2015
và y=2^2016
Chứng minh rằng x,y là hai số tự nhiên liên tiếp
x = 1+2+22+23+.....+22015
2x = 2+22+23+24+....+22016
2x- x = 22016 - 1
=> x = 22016 - 1
Có y - x = 22016 - (22016 - 1) = 1
=> x và y là 2 số tự nhiên liên tiếp (Đpcm)
cho x= 1+2+2^2+.................................+2^2015
y=2^2016
chứng minh rằng x,y là hai số tự nhiên liên tiếp nhau
Ta có
2x=2+2^2+2^3+...+2^2016
=>2x-x=(2+2^2+2^3+...+2^2016)-(1+2+2^2+...+2^2015)
=>x=2^2016-1
Mà y =2016
Nên x,y là 2 so tu nhien lien tiep
\(x=1+2+2^2+....+2^{2015}\)
\(2x=2+2^3+2^4+...+2^{2016}\)
\(2x-x=\left(2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+....+2^{2015}\right)\)
\(x=2^{2016}-1\)
Vì \(x=2^{2016}-1;y=2^{2016}\)
Vậy x và y là 2 số tự nhiên tiếp nhau
Cho x, y là các số tự nhiên thỏa mãn \(3y^2+1=4x^2\). Chứng minh rằng x là tổng bình phương của hai số tự nhiên liên tiếp.
Cho x;y là các số tự nhiên thỏa mãn \(3y^2+1=4x^2\). Chứng minh rằng x là tổng bình phương của hai số tự nhiên liên tiếp
Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
Tại sao 2x+1 và 2x-1 lại nguyên tố cùng nhau vậy bạn?
Chứng minh nó nguyên tố :
Đặt \(\left(2x-1,2x+1\right)=d\)
Khi đó : \(\hept{\begin{cases}2x-1⋮d\\2x+1⋮d\end{cases}}\) \(\Rightarrow2⋮d\Rightarrow d\in\left\{1,2\right\}\)
Mà : \(2x-1⋮̸2\)
Vì vậy : \(d=1\)
Chứng tỏ rằng :
11....1 x 22....2
( n số 1 ) x ( n số 2 ) là tích của hai số tự nhiên liên tiếp .
http://olm.vn/hoi-dap/question/5106.html?auto=1
**** cho mình nha conan
bạn vô đây nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
chứng minh rằng số 11...1. 22..2 là tích của hai số tự nhiên liên tiếp với mọi n lớn hơn hoặc bằng 1
Cho A = 20 + 21 + 22 + 23 + ... + 219. và B = 220. Chứng minh rằng A và B là hai số tự nhiên liên tiếp
Cho A=1+22+24+...+22020+22022; B=22023. Chứng minh rằng 3A và 2B là hai số tự nhiên liên tiếp.
CẦN TRC 7H SÁNG MAI Ạ
TK :
ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024
từ đó 3A = 4A - A = 22 + 24 + .... + 22024 - 1 + 22 + .... + 22022 = 22024 - 1
mà 2B = 22024
Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.