Những câu hỏi liên quan
A5
Xem chi tiết
NM
22 tháng 10 2021 lúc 20:41

Bài 1:

Vì AD là p/g góc A nên \(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{BAC}=30^0\)

Mà \(\widehat{A_2}+\widehat{C}+\widehat{D_1}=180^0\Rightarrow\widehat{D_1}=180^0-30^0-40^0=110^0\)

Mà AE//BC nên \(\widehat{EAD}=\widehat{D_1}=110^0\left(so.le.trong\right)\)

Vì DE//AC nên \(\widehat{A_2}=\widehat{D_2}=30^0\left(so.le.trong\right);\widehat{D_3}=\widehat{C}=40^0\left(đồng.vị\right)\)

Vì AE//BC nên \(\widehat{D_3}=\widehat{E}=40^0\)

Vậy các góc tg ADE là \(\widehat{A}=110^0;\widehat{D}=30^0;\widehat{E}=40^0\)

Bình luận (1)
NM
22 tháng 10 2021 lúc 20:52

Bài 2:

a, Xét tg ABH và tg DBH có 

\(\left\{{}\begin{matrix}\widehat{BAH}=\widehat{BDH}=90^0\\\widehat{ABH}=\widehat{DBH}\left(BH.là.p/g\right)\\BH.chung\end{matrix}\right.\\ \Rightarrow\Delta ABH=\Delta BDH\left(ch-gn\right)\\ \Rightarrow HA=HD\)

b, Xét tg AHE và tg DHC có

\(\left\{{}\begin{matrix}\widehat{AHE}=\widehat{DHC}\left(đối.đỉnh\right)\\\widehat{HAE}=\widehat{HDC}=90^0\\HA=HD\left(cmt\right)\end{matrix}\right.\\ \Rightarrow\Delta AHE=\Delta DHC\left(g.c.g\right)\\ \Rightarrow CD=AE\)

Mà \(AB=BD\left(\Delta ABH=\Delta DBH\right)\)

\(\Rightarrow AB+AE=BD+CD\\ \Rightarrow BE=BC\)

Vì \(AD=AB\) nên tg ABD cân tại B

Do đó \(\widehat{BAD}=\dfrac{180^0-\widehat{ABC}}{2}\left(1\right)\)

Vì \(BE=BC\) nên tg BEC cân tại B

Do đó \(\widehat{BEC}=\dfrac{180^0-\widehat{ABC}}{2}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{BAD}=\widehat{BEC}\) mà 2 góc này ở vị trí đồng vị nên AD//EC

Bình luận (0)
H24
Xem chi tiết
LT
20 tháng 10 2021 lúc 14:25

 

1)xét tứ giác EACD

EA//DC,ED//AC

=>EACD hình bình hành

E=C=40(hai góc đối)

ta có DAC=BAC/2=60/2=30(AD là tia pg)

mà ED//AC

=>ADE=DAC=30(so le)

xét tg EAD

E+ADE+EAD=180

EAD=180-ADE-E=180-30-40=110

2)

a)xét tgAHB và tgDHB

BAH=BDH=90,ABH=HBD(BH là tia pg),BH chung

=>tgAHB=tgDHB(cạnh huyền góc nhọn)

=>AH=HD,BA=BD

b)xét tg BDE và tgBAC

BA=BD,ABC chung,BAC=BDE=90

=>tgBDE=tgBAC(gcg)

=>BE=BC

xét tg BEC

 BA/BE=BD/BC=>AD//EC(ta lét đảo)

 

 

 

 

 

 

 

Bình luận (1)
LT
20 tháng 10 2021 lúc 15:44

à mik làm thiếu 

c)xét BEK

ED cắt AC tại H

mà ED vuông BC,AC vuông BE

=>H là trực tâm

lại có BK cắt AC tại H

=>BK vuông EC

xét tg vuông BKC

BM=MC

=>MK=MB(đường trung tuyến ứng cạnh huyền)(1)

xét tg vuông BAC

BM=MC

=>AM=MB(đường trung tuyến ứng cạnh huyền)(2)

từ (1)(2)=>AM=MK

 

Bình luận (0)
A5
Xem chi tiết
TT
25 tháng 10 2021 lúc 14:45

Cách ra nha bn ! Vs lại bài 3 hình ko cho độ thì lm sao mà lm đc đây?

Bình luận (1)
NL
Xem chi tiết
NL
Xem chi tiết
NT
30 tháng 8 2021 lúc 14:37

4: Ta có:ΔAIP=ΔMIB

nên IA=IM

hay I là trung điểm của AM

Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Bình luận (1)
H24
30 tháng 8 2021 lúc 14:37

Câu 4 Ta có xét tg PBM có PN=MN( tg PNA=tg MNC)

                                    PI=BI( tg  AIP= tgMIB)

=> IN là đường trung bình tg PBM

=>IN//BM <=> IN//BC        

Bình luận (1)
H24
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NT
31 tháng 8 2021 lúc 0:17

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)

Xét ΔABH và ΔACH có

AB=AC

AH chung

BH=CH
Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Do đó: AH\(\perp\)BC

Bình luận (0)
NL
Xem chi tiết
TH
1 tháng 10 2021 lúc 13:28

tam giác ABM và tam giác KBM có
BK=BA
BM là cạnh chung
BM là phân giác góc B = > góc ABM = góc KBM
=> tam giác ABM = tam giác KBM ( c.g.c)
 

Bình luận (2)
NT
1 tháng 10 2021 lúc 15:01

b: Ta có: ΔABM=ΔKBM

nên \(\widehat{BAM}=\widehat{BKM}=90^0\)

Xét ΔAME vuông tại A và ΔKMC vuông tại K có

MA=MK

\(\widehat{AME}=\widehat{KMC}\)

Do đó: ΔAME=ΔKMC

Suy ra: ME=MC

Bình luận (1)
NM
1 tháng 10 2021 lúc 15:46

\(a,\left\{{}\begin{matrix}\widehat{ABM}=\widehat{KBM}\left(t/c.phân.giác\right)\\AB=BK\left(gt\right)\\BM.chung\end{matrix}\right.\Rightarrow\Delta ABM=\Delta KBM\left(c.g.c\right)\\ b,\Delta ABM=\Delta KBM\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{MKB}=90^0\\MA=MK\end{matrix}\right.\\ \left\{{}\begin{matrix}\widehat{MAE}=\widehat{MKC}\left(=90^0\right)\\MA=MK\\\widehat{AME}=\widehat{KMC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta KMC\left(cgv-gn\right)\\ \Rightarrow ME=MC\)

\(c,\Delta BEC\) có CA là đường cao \(\left(CA\perp BE\right)\), EK là đường cao \(\left(EK\perp BC\right)\), EK cắt CA tại M nên M là trực tâm

Do đó BM là đường cao thứ 3

Mà \(M\in BI\) nên BI là đường cao thứ 3 của tam giác BEC

\(\Rightarrow BI\perp EC\)

\(d,\) Vì \(AB=BK\) nên tam giác ABK cân tại B

\(\Rightarrow\widehat{BAK}=\dfrac{180^0-\widehat{ABK}}{2}\left(1\right)\)

Ta có \(\left\{{}\begin{matrix}AB=BK\\AE=CK\end{matrix}\right.\Rightarrow AB+AE=BK+KC\Rightarrow BE=BC\)

Do đó tam giác BEC cân tại B

\(\Rightarrow\widehat{BEC}=\dfrac{180^0-\widehat{ABK}}{2}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{BAK}=\widehat{BEC}\)

Mà 2 góc này ở vị trí đồng vị nên \(AK//EC\)

\(\Rightarrow AK\perp BI\left(EC\perp BI\right)\) hay \(AK\perp MQ\left(Q\in BI;M\in BI\right)\)

Xét tam giác AQK có KH là đường cao \(\left(KH\perp AQ\right)\), QM là đường cao \(\left(AK\perp QM\right)\) và KH cắt QM tại M nên M là trực tâm

Do đó AM là đường cao thứ 3 hay \(AM\perp QK\)

Mà \(AM\perp PK\left(gt\right)\)

Nên PK trùng QK hay 3 điểm K,P,Q thẳng hàng

Bình luận (1)