Những câu hỏi liên quan
H24
Xem chi tiết
QO
13 tháng 6 2020 lúc 19:33

Bài làm

Xét tam giác ABC có:

BD và CE cắt nhau ở G

Mà BD và CE là các đường trung tuyến

=> G là trọng tâm của tam giác ABC

Theo tính chất đường trung tuyến có:

 \(\frac{BD}{BG}=\frac{3}{2}\Rightarrow BD=\frac{3}{2}BG\)                             (1)

 \(\frac{CE}{CG}=\frac{3}{2}\Rightarrow CE=\frac{3}{2}CG\)                             (2)

Cộng (1) vào (2) ta được: 

\(BD+CE=\frac{3}{2}BG+\frac{3}{2}CG\)

=> \(BD+CE=\frac{3}{2}\left(BG+CG\right)\)

=> \(BD+CE=\frac{3}{2}\left(BG+CG\right)\) 

=> \(\left(BD+CE\right):\frac{3}{2}=BG+CG\)

=>\(\frac{2}{3}\left(BD+CE\right)=BG+CG\)                            (3)

Xét tam giác GBC có:

BG + CG > BC ( theo bất đẳng thức của tam giác )

=> \(\frac{2}{3}\left(BG+CE\right)>BC\)                                                (4)

Từ (3) và (4) => BD + CE > BC : 2/3

=> BD + CE > 3/2BC 

Chả biết mik đúng hay do đề sai. Đã thế lại cho BC mặc dù không cần. Đề sai hay thiếu à ? 

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 6 2020 lúc 5:36

đề là 

cho tam giác ABC có BC=8, các đường trung tuyến BD,CE cắt nhau tại G. Chứng minh rằng BD+CE>12cm

Bình luận (0)
 Khách vãng lai đã xóa
QO
14 tháng 6 2020 lúc 8:02

Thế mik làm tiếp nhé.

Ta có: BD + CE > 3/2BC

Mà BC = 8

=> BD + CE > 3/2.8

=> BD + CE > 3 . 4

=> BD + CE > 12

Vật BD + CE > 12 ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
H24
4 tháng 3 2023 lúc 18:11

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

Bình luận (0)
H24
4 tháng 3 2023 lúc 18:17

loading...

Bình luận (0)
NH
Xem chi tiết
NH
17 tháng 3 2023 lúc 9:10

giải hộ

 

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 7 2019 lúc 5:09

Gọi G là giao điểm của BD và CE.

Trong ∆GBC, ta có:

GB + GC > BC (bất đẳng thức tam giác)

GB = 2/3 BD (tính chất đường trung tuyến)

GC = 2/3 CE (tính chất đường trung tuyến)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Mà BC = 10 cm (gt)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

⇒ BD + CE > 15 (cm).

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 4 2019 lúc 7:23

Vì tam giác ABC cân tại A nên đường trung trực của cạnh đáy BC đồng thời là trung tuyến của tam giác ABC ứng với cạnh BC.

Kết hợp với giả thiết suy ra G là trọng tâm của tam giác ABC.

Bình luận (0)
H24
Xem chi tiết
NS
13 tháng 6 2020 lúc 22:47

Xét tam giác ABC : BD-đường trung tuyến 

                               CE-đường trung tuyến

                               BD cắt CE tại G

=> G - trọng tâm tam giác ABC.

=> BG=2/3 BD

=>CE=2/3 CE

Xét tam giác BGC 

=> BG+CG > BC ( BĐT trong tam giác)

=>2/3 BD +2/3 CE > BC

=> 2/3 (BD+CE ) > BC

Thay số : BC=8 cm ta đc :

2/3(BD+CE) > 8cm

=> 3/2 . 2/3 (BD+CE)> 3/2 . 8cm

=> BD+CE > 12cm

Bình luận (0)
 Khách vãng lai đã xóa
SP
Xem chi tiết
DV
2 tháng 7 2015 lúc 17:26

Bài 1 :

Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED

Lấy điểm I trên x sao cho DI=EI  ( I nằm trên nửa mặt chứa A bờ ED )

=>ΔIEH = ΔIDH (= c.c.c)

=>EHI=IHD=180o : 2=90o

=>đpcm

Bình luận (0)