giá trị nhỏ nhất của A=Ix+1/6I
Tìm giá trị nhỏ nhất của Ix+6I+Ix+8I
Giá trị nhỏ nhất của Ix2+3I+Iy2+6I-12,5 là......
-3,5
minh chac chan 100% do cho minh nha
b1: cho a+b+c=1. chứng minh rằng ab+bc+ca<1 phần 2
b2:tính giá trị nhỏ nhất của biểu thức P=Ix-2I+Ix-3I
b3:tính giá trị nhỏ và lớn nhất của biểu thức A=x^2-x+1 phần x^2+x+1
mong các thánh nhân chỉ dạy
Bài 1: -Sửa đề: a,b,c>0
-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Quay lại bài toán:
\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)
\(\Rightarrow3\left(ab+bc+ca\right)\le1\)
\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)
Bài 2:
-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.
\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)
\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)
\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)
-Quay lại bài toán:
\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)
\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)
-Vậy \(P_{min}=1\)
Bài 3:
\(A=\dfrac{x^2-x+1}{x^2+x+1}=\dfrac{x^2+x+1-2x}{x^2+x+1}=1-\dfrac{2x}{x^2+x+1}\)
*Khi \(x=0\) thì:
\(A=1-\dfrac{2.0}{0+0+1}=1-0=1\).
*Khi \(x>0\) thì:
-Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\)
\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\ge1-\dfrac{2}{2+1}=\dfrac{1}{3}\)
\(A=\dfrac{1}{3}\Leftrightarrow x=1\left(tmđk\right)\)
-Vậy \(A_{min}=\dfrac{1}{3}\)
-Khi \(x< 0\) thì: Đặt \(x=-y\left(y>0\right)\).
-Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(y+\dfrac{1}{y}\ge2\sqrt{y.\dfrac{1}{y}}=2\)
\(\Rightarrow-x-\dfrac{1}{x}\ge2\)
\(\Rightarrow x+\dfrac{1}{x}\le-2\).
\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\le1-\dfrac{2}{-2+1}=3\)
\(A=3\Leftrightarrow x=-1\left(tmđk\right)\)
-Vậy \(A_{max}=3\)
Tìm giá trị nhỏ nhất của A= Ix-2021I + Ix-21I
Tìm giá trị nhỏ nhất của biểu thức A=Ix-2010I+Ix-2012I+Ix-2014I
Vì |x-2010| ≧ 0 với mọi x
|x-2012| ≧ 0 với mọi x
|x-2014| ≧ 0 với mọix
Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0
hay A ≧ 0
Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)
Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}
Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!
Tìm giá trị nhỏ nhất của x để C có giá trị nhỏ nhất:
C=Ix-3.2I+Ix-4I
C=|x-3,2|+|x-4|
xài BĐt |a|+|b|>=|a+b| ta có:
|x-3,2|+|x-4| >= |x+3,2+4-x|=4/5
=>C >= 4/5
Dấu = khi ab >=0 =>(x-3,5)(x-4)>=0 =>....
Vậy ....
giúp thì giúp cho chót lun đê!
Please!!!!!!!!!!!!!!!!!!!!!!!
Cho A= Ix+3I + Ix-5I
Tìm giá trị nhỏ nhất của A.
A = |x+3| + |x-5|
A = |x+3| + |5-x| >= |x+3+5-x| = 8
Dấu "=" xảy ra <=> (x+3)(5-x) >=0
=> x >= -3; x <= 5 hoặc x<= -3;x>=5 (không xảy ra)
Vậy Min A = 8 khi -3<=x<=5
A=|x+3|+|x-5|
=|x+3|+|5-x|> hoặc bằng |x+3+5-x|=8
(Mình chỉ bt làm đến đây thôi, xin lỗi bạn nha!!!
Bài 1:Tìm giá trị lớn nhất của:
A=0.5 - Ix-3.5I
B=-I1.4-xI-2
Bài 2:Tìm giá trị nhỏ nhất của:
C=1.7+ I3.4-xI
D=Ix+2.8I - 3.5
Bài 1:
a)A=0,5-|x-3,5|
Vì \(\left|x-3,5\right|\ge0\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Vậy A đạt giá trị lớn nhất khi:
0,5-|x-3,5|=0,5
=>|x-3,5|=0
=>x-3,5=0
=>x=0+3,5
=>x=3,5
Vậy giá trị lớn nhất của A là 0,5 khi x=3,5
b) B=-|1,4-x|-2
Vì \(\left|1,4-x\right|\ge0\Rightarrow-\left|1,4-x\right|-2\le-2\)
Biểu thức B đạt giá trị lớn nhất khi:
-|1,4-x|-2=-2
=>-|1,4-x|=0
=>x-1,4=0
=>x=1,4
Vậy B đạt giá trị lớn nhất là -2 khi x=1,4
Bài 2:
a) C=1,7+|3,4-x|
Vì \(\left|3,4-x\right|\ge0\Rightarrow1,7+\left|3,4-x\right|\ge1,7\)
Biểu thức C đạt giá trị nhỏ nhất khi:
1,7+|3,4-x|=1,7
=> |3,4-x|=0
=> 3,4-x=0
=> x=3,4
Vậy giá trị nhỏ nhất của C là 1,7 khi x=3,4
b) D=|x+2,8|-3,5
Vì \(\left|x+2,8\right|\ge0\Rightarrow\left|x+2,8\right|-3,5\le-3,5\)
Biểu thức D đạt giá trị nhỏ nhất khi:
|x+2,8|-3,45=-3,45
=>|x+2,8|=0
=>x+2,8=0
=>x=-2,8
Vậy D đạt giá trị nhỏ nhất là -3,5 khi x=-2,8
Giải dùm mình
1) Tìm GTNN
a) A=\(|\)x-7\(|\)+\(|\)x-4\(|\)
b) B= 1/5-\(|\)x-4\(|\)
Tìm giá trị nhỏ nhất của A=Ix-1I+Ix+5I+(x-2)2+2017
A = |x - 1| + |x + 5| + (x - 2)2 + 2017
A = |x - 1| + |x + 5| + |(x - 2)2| + 2017
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017
Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017
A\(\ge\) |x2 - 2x + 8| + 2017
A \(\ge\) |x2 - x - x + 1 + 7| + 2017
A\(\ge\) |(x - 1)2 + 7| + 2017
A\(\ge\) (x - 1)2 + 2024
Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0
=> x \(\ge\)1; x \(\ge\)-5
=> x \(\ge\)1
Vậy GTNN của A là 2024 khi x = 1