Những câu hỏi liên quan
H24
Xem chi tiết
DL
Xem chi tiết
NT
12 tháng 9 2015 lúc 15:49

Chọn bộ 13 số sau:
1,11,...111111 (13 chữ số 1)
Đem chia 13 số trên cho 12.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 111..111 (m chữ số 2) và 111.111 (n chữ số 2) m,n trong khoảng 1 đến 13
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 12 nên
[111.111 (m chữ số 2) - 111.111 (n chữ số 2)] chia hết cho 12
=>111.11100...000 (m-n chữ số 2; n chữ số 0) chia hết cho 12
hay 111.111(m-n chữ số 2).10^n chia hết cho 12
=>111.111 (m-n chữ số 2) chia hết cho 12
=> đpcm.

Bình luận (0)
HC
Xem chi tiết
NL
24 tháng 12 2018 lúc 22:25

Bạn gọi như sau:
a1=7
a2=77
a3=777
......
a32=77777.....7777(gồm 32 số 7)
Đem chia cho 31 ta có 32 số số dư
R1;R2:R3;R4;....:R32 nhưng chỉ nhận 31 giá trị(0;1;2;3;4;5;6;.....;30) nên sẽ có 2 số dư trùng nhau
chẳng hạn Rm=Rn (Với m>n) thì am-an chia hết cho 31 (vì đồng dư),ta lại có
777..7(gồm m chữ số 7)-77...7(gồm n chữ số 7)=777...7(gồm m-n số 7)00....0(gồm n số 0)=777...7 nhân 10^n chia hết cho 31
vi 10^n và 31 là hai số nguyên tố cùng nhau nên suy ra 777..7 chia hết cho 31 .
Vì bài này chỉ chứng minh chứ ko phải tìm số nhé :D 

Bình luận (0)
VV
Xem chi tiết
NT
15 tháng 3 2020 lúc 10:36

Tham khảo: https://olm.vn/hoi-dap/detail/1839321884.html

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 3 2020 lúc 10:36

Bn vào link này : https://olm.vn/hoi-dap/detail/107117815751.html

# HOK TỐT #

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
SG
10 tháng 9 2016 lúc 17:30

Xét dãy số: 1; 11; 111; 1111; ...; 111...1 (32 số 1)

Ta đã biết 1 số tự nhiên khi chia cho 31 chỉ có thể có 31 loại số dư là dư 0; 1; 2; ...; 30. Có 32 số mà chỉ có 31 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư

Hiệu của 2 số này chia hết cho 31 và chỉ gồm toàn chữ số 0 và 1 (đpcm)

Bình luận (0)
MP
Xem chi tiết
LP
10 tháng 9 2023 lúc 8:35

 Xét các số \(10^{13},10^{12},10^{11},...,10^1,10^0\). Có tất cả 14 số như thế. Mà một số khi chia cho 13 chỉ có 13 số dư là \(0,1,2,...,12\) nên sẽ tồn tại 2 số \(10^i,10^j\left(0\le i< j\le13\right)\) có cùng số dư khi chia cho 13.

 \(\Rightarrow10^i-10^j⋮13\) 

 \(\Rightarrow10^i\left(10^{j-i}-1\right)⋮13\) 

 \(\Rightarrow10^{j-i}-1⋮13\)

Nếu \(j-i=1\) thì dẫn đến \(9⋮13\), vô lí. Vậy \(j-i\ge2\)

Ta thấy \(10^{j-i}-1=99...9\) (với \(j-i\) chữ số 9).

Từ đó suy ra 999...99 (\(j-i\) chữ số 9) \(⋮13\) 

hay \(9.111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(222...22\) (\(i-j\) chữ số 2) \(⋮13\)

Vậy tồn tại một bội của 13 chỉ gồm toàn các chữ số 2.

 

 

Bình luận (0)
LP
10 tháng 9 2023 lúc 8:39

 Chỗ này mình sửa lại 1 chút là \(10^j-10^i⋮13\) nhé. Mặc dù cái trên về bản chất thì vẫn đúng (vì nếu \(a⋮13\) thì \(-a⋮13\)) nhưng nếu viết như trên thì đôi khi sẽ gây nhầm lẫn cho người đọc.

Bình luận (0)
KD
Xem chi tiết
DL
Xem chi tiết
NS
20 tháng 12 2016 lúc 21:00

nk nghĩ là số 222222222222 đó

Bình luận (0)
HN
21 tháng 12 2016 lúc 13:15

đáp án là 2222222222223

Bình luận (0)
HN
21 tháng 12 2016 lúc 13:16

222222222222

Bình luận (0)
HN
Xem chi tiết