Những câu hỏi liên quan
LT
Xem chi tiết
TN
17 tháng 2 2019 lúc 18:09

\(1\ge a,b,c\ge0\)\(\Rightarrow b^2\le b;c^3\le c\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\) (1)

\(1\ge a,b,c\ge0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Leftrightarrow abc+a+b+c-ab-bc-ca-1\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)

\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow-abc\le0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1\) (2)

Từ (1) và (2) \(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)

banhqua

Bình luận (0)
DQ
Xem chi tiết
KL
28 tháng 2 2017 lúc 19:38

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

Bình luận (0)
DH
Xem chi tiết
NL
4 tháng 10 2021 lúc 16:52

\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\)

\(\Leftrightarrow2\ge\dfrac{a+b}{a+b+1}+\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}=\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+a+b}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)^2+b+c}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)^2+c+a}\)

\(\Rightarrow2\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca+a+b+c}\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)

\(\Rightarrow\)đpcm

Bình luận (0)
TN
Xem chi tiết
DH
7 tháng 1 2018 lúc 21:50

Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)

\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)

\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)

\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)

Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)

Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)

Bình luận (0)
H24

Do\(1\ge a,b,c\ge0\)

\(\Rightarrow b\ge b^2,c\ge c^3\)

Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)

Vì \(1\ge a,b,c\ge0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)

Mà \(abc\ge0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2) 

Từ (1) và (2) => đpcm

Bình luận (0)
DH
Xem chi tiết
NL
4 tháng 10 2021 lúc 12:49

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

Bình luận (0)
NB
Xem chi tiết
KT
17 tháng 2 2020 lúc 16:10

https://olm.vn/hoi-dap/detail/239526218296.html

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 2 2020 lúc 13:39

Sử dụng phân tích tuyệt vời của Ji Chen:

\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 2 2020 lúc 13:47

Hãy xem phương pháp Buffalo-Way giải quyết nó!

Viết BĐT lại thành: \(\left(ab+bc+ca\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\ge\frac{25}{4}\)

Giả sử \(a\ge b\ge c\) và đặt \(a=c+u+v,b=c+v\left(u,v\ge0\right)\). Sau khi quy đồng, bất đẳng thức trở thành:

128 c^6+4 u^5 v+19 u^4 v^2+30 u^3 v^3+15 u^2 v^4+c^5 (256 u+512 v)+c^4 (192 u^2+832 u v+832 v^2)+c^3 (96 u^3+528 u^2 v+1008 u v^2+672 v^3)+c^2 (40 u^4+224 u^3 v+488 u^2 v^2+528 u v^3+264 v^4)+c (8 u^5+60 u^4 v+152 u^3 v^2+168 u^2 v^3+100 u v^4+40 v^5) \(\ge0\) (hiển nhiên đúng)

P/s: Khúc cuối dài quá gõ công thức bị tràn hết màn hình nên đành gõ ngoài, thông cảm! Nhớ bài này có một cách dùng dồn biến mà nghĩ không ra.

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
TC
27 tháng 8 2021 lúc 21:55

undefined

Bình luận (0)
NC
27 tháng 8 2021 lúc 22:00

Bình luận (0)
LP
Xem chi tiết
ND
3 tháng 1 2022 lúc 14:22

TL :

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).

HT

Bình luận (0)
 Khách vãng lai đã xóa
LP
3 tháng 1 2022 lúc 14:57

Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái 

\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?

Bình luận (0)
 Khách vãng lai đã xóa
LP
3 tháng 1 2022 lúc 15:20

Anh xem sai chỗ nào ạ?

Áp dụng BĐT Cô-si, ta có 

\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(1)

và \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(vì \(a+b+c\le1\)) (2)

và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)(3)

Kết hợp (2) và (3) ta có \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(4)

Kết hợp (1) và (4) ta có \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{\frac{8\left(ab+bc+ca\right)^3}{27^2}}}=\sqrt[3]{\frac{27.27^2}{8\left(ab+bc+ca\right)^3}}\)

\(=\frac{27}{2\left(ab+bc+ca\right)}\)

Từ đó \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)

Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(vì \(a+b+c\le1\))

Lại có \(\frac{1}{ab+bc+ca}\ge\frac{3}{\left(a+b+c\right)^2}\ge3\)(cũng vì \(a+b+c\le1\))

Do đó ta được 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{2}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)

\(\ge9+\frac{23.3}{2}=\frac{87}{2}\)

Vậy BĐT được chứng minh.

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết