Cho a/2=b/5=c/7.Tìm giá trị của biểu thức A=a-b+c/a+2b-c
cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\) tìm giá trị của biểu thức \(A=\frac{a-b+c}{a+2b-c}\)
cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{.7}.\)Tìm giá trị của biểu thức A=\(\frac{a-b+c}{a+2b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow a=2k;b=5k;c=7k\)thay vào A
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\). Tìm giá trị của biểu thức A=\(\frac{a-b+c}{a+2b-c}\)
Ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a-b+c}{4}\)(1)
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{2b}{10}=\frac{a+2b-c}{2+10-7}=\frac{a+2b-c}{5}\)(2)
Từ (1),(2) suy ra: \(\frac{a-b+c}{4}=\frac{a+2b-c}{5}\)
=>\(\frac{a-b+c}{a+2b-c}=\frac{4}{5}\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Hiếu Thái Trung dài dòng vl.
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=t\Rightarrow a=2t;b=5t;c=7t\).Thay vào,ta có:
\(A=\frac{2t-5t+7t}{2t+2.5t-7t}=\frac{\left(2-5+7\right)t}{\left(2+10-7\right)t}=\frac{4t}{5t}=\frac{4}{5}\) (cần lưu ý rằng,do t ở dưới mẫu nên t khác 0)
cho a/2=b/5=c/7 tìm giá trị của biểu thưc A=a-b+c/a+2b-6
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
Bài của mình đây , ko biết có đúng ko
cho a/2=b/5=c/7. tính giá trị biểu thức A=a-b+c/a+2b-c
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Khi đó \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\). Tìm giá trị của biểu thức \(A=\frac{a-b+c}{a+2b-c}\)
Giải:
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k,b=5k,c=7k\)
Ta có:
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{\left(2-5+7\right)k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Câu 2: cho a/2=b/5=c/7. tính giá trị biểu thức A=a-b+c/a+2b-c
Cho \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\) . Tìm giá trị biểu thức A = \(\frac{a-b+c}{a+2b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
=> a=2k; b=5k; c=7k
Suy ra:
A=\(\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4.k}{-1.k}=\frac{4}{-1}=-4\)
Vậy A=-4