tìm các số a,b,c thỏa mãn
\(\overline{abc^a}=\overline{bc\left(a-1\right)bc}\)
giúp e với ạ
1,tìm tất cả các bộ 3 số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
2, Có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)⋮101\)
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
tìm các số a,b,c thỏa mãn
\(\overline{abc^a}=\overline{bc\left(a-1\right)bc}\)
giúp mình với ạ
Tìm các chữ số a,b,c thỏa mãn: \(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
Cho ab , bc \(\left(c\ne0\right)\)là các số có 2 chữ số thỏa mãn điều kiện: \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
B1: Cho \(\frac{\overline{abc}}{a+\overline{bc}}=\frac{\overline{bca}}{b+\overline{ca}}\)
C/m: \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
B2: Cho \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\). C/m a = b = c
B3: Cho \(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\). C/m 4 số a; b; c; d lập thành 1 tỉ lệ thức
\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)
- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)
- Nếu a; b đều khác 0
\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)
Bài 2 tương tự
\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)
\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó
Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?
Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền
Cho dãy tỉ số \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)( với a,b,c\(\ne\)0 ) .Tính \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
+) Nếu \(a+b+c=0\) :
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(b+c=-a\)
\(\Rightarrow\)\(a+c=-b\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
+) Nếu \(a+b+c\ne0\) :
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(a=b=c\)
Suy ra :
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
Tìm các chu số a,b,c thỏa mãn.
a. ab + bc + ca = abc b. abc + ab + a = 874
a, ab + bc + ca = abc
ab + bc + ca = a00 + bc
ab + ca = a00
Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1
Vì b + a có tận cùng là 0 => b = 9
c + a + nhớ 1 có tận cùng là 0 => c = 8
Vậy a=1,b=9,c=8
b, abc + ab + a = 874
Đổi chỗ các chữ số vào 1 cột, ta được:
abc aaa
+ +
ab => bb
+ +
a c
____ ______
874 874
Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)
=> bb + c = 874 - 777 = 97
Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)
=> c = 97 - 88 = 9
Vậy a = 7, b = 8, c = 9
Cho ab , bc \(\left(c\ne0\right)\)là các số có 2 chữ số thỏa mãn điều kiện: \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
CMR: b2 = ac
Cho ab , bc \(\left(c\ne0\right)\)là các số có 2 chữ số thỏa mãn điều kiện: \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
CMR: b2 = ac