Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HN
Xem chi tiết
H24
Xem chi tiết
NN
2 tháng 12 2015 lúc 22:01

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

Bình luận (0)
H24
2 tháng 12 2015 lúc 21:57

Thanh Nguyễn Vinh chi tiết giùm

Bình luận (0)
VL
Xem chi tiết
NK
3 tháng 12 2015 lúc 21:58

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

Bình luận (0)
PT
Xem chi tiết
HD
3 tháng 5 2016 lúc 20:54

Lập bảng xét dấu là ra thôi bài này dễ mà

Bình luận (0)
PT
3 tháng 5 2016 lúc 21:02

ns nghe thì dễ nhưng trình bày sao

Bình luận (0)
TA
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
PQ
28 tháng 9 2018 lúc 22:02

\(A=\left|x+1\right|+\left|y-2\right|\)

\(A\ge\left|x+1+y-2\right|=\left|5+1-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+1\right)\left(y-2\right)\ge0\)

TH1 : \(\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}\Leftrightarrow}x+y\ge-1+2=1}\) ( thõa mãn giả thiết ) 

TH 2 : \(\hept{\begin{cases}x+1\le0\\y-2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\y\le2\end{cases}\Leftrightarrow}x+y\le-1+2=1}\) ( loại ) 

Vậy GTNN của \(A\) là \(4\) khi \(x+y=5\) và \(\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)

Chúc bạn học tốt ~ 

Bình luận (0)
YH
28 tháng 9 2018 lúc 22:02

Ta có A=\(|x+1|+|y-2|\ge|x+1+y-2|=|5-1|=4\)=4

(vì x+y=5)

Suy ra Amin= 4

Dấu "=" xảy ra <=> (x+1)(y-2)\(\ge0\)

\(\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1\le0\\y-2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\\\hept{\begin{cases}x\le-1\\y\le2\end{cases}}\end{cases}}\)

Bình luận (0)
MD
28 tháng 9 2018 lúc 22:04

Ta có : |x+1| + |y-2| > |x+1 + y-2| = |x+y -1|   

                                                    = | 5 -  1 |

                                                     =4

Dấu "=" xảy ra <=> x+1 > 0 và y-2 > 0

                        <=> x > -1 và y > 2 

     Kết hơp gt : x+y=5 => \(\hept{\begin{cases}x\ge-1\\y\ge2\\x+y=5\end{cases}}\)                     

Vậy Amin = 4 \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\\x+y=5\end{cases}}\)     

Bình luận (0)
PA
Xem chi tiết
AH
28 tháng 7 2024 lúc 18:29

Lời giải:

$6x+y=5$

$\Rightarrow y=5-6x$

Khi đó: $A=|x+1|+|y-2|=|x+1|+|5-6x-2|=|x+1|+|3-6x|$

Nếu $x<-1$ thì:

$A=-x-1+3-6x=2-7x> 2-7(-1)=9$

Nếu $\frac{1}{2}\geq x\geq -1$ thì:

$A=x+1+3-6x=4-5x\geq 4-5.\frac{1}{2}=\frac{3}{2}$

Nếu $x> \frac{1}{2}$ thì:

$A=x+1+6x-3=7x-2> 7.\frac{1}{2}-2=\frac{3}{2}$

Từ 3 TH trên suy ra $A_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$

Bình luận (0)
H24
Xem chi tiết
IM
21 tháng 8 2016 lúc 9:08

Ta có

\(\begin{cases}\left|x+1\right|\ge0\\\left|y+2\right|\ge0\\\left|x-y+z\right|\ge0\\\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+1=0\\y+2=0\\x-y+2=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\x-y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\\left(-1\right)-\left(-2\right)+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\1+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\z=-1\end{cases}\)

 

Bình luận (0)
VT
21 tháng 8 2016 lúc 9:09

Ta có : \(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)

Để tìm được vế 3 ta xết 2 vế đầu tiên :

  \(\left|x+2\right|+\left|y+2\right|=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\y+2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\y=-2\end{array}\right.\)

Từ đó ta có \(x=-1;y=-2\)

Ta có : \(\left|-1+2+z\right|=0\Rightarrow z=-1\)

Vậy \(\left[\begin{array}{nghiempt}x=-1\\y=-2\\z=-1\end{array}\right.\)

Không biết đúng không nữa

 

Bình luận (4)
LF
21 tháng 8 2016 lúc 9:10

Ta thấy: \(\begin{cases}\left|x+1\right|\\\left|y+2\right|\\\left|x-y+z\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|\ge0\)

Dấu = khi \(\begin{cases}\left|x+1\right|=0\\\left|y+2\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\y=-2\end{cases}\)

Thay vào |x-y+z|=0 đc:

|(-1)-(-2)+z|=0 <=>z=-1

Vậy x=z=-1 và y=-2

 

 

Bình luận (0)