Cho phương trình
\(x^2+3x-10=0\)
\(\frac{1}{x_1}+\frac{1}{x_2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho phương trình: -3x2 - 5x - 2 = 0
Với x1, x2 là nghiệm của phương trình, không giải phương trình, hãy tính: \(M=x_1+\frac{1}{x_1}+\frac{1}{x_2}+x_2\)
\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)
-3x2-5x-2=0
Ta có :-3-(-5)-2=0
=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)
Thay x1;x2 vào M ta được:
M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)
=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)
=\(-\frac{64}{15}\)
Cho phương trình
\(x^2+3x-10=0\)
Không giải phương trình
Tính
\(\frac{1}{x_1}+\frac{1}{x_2}\)
Theo định lí viet: \(x_1x_2=-10;x_1+x_2=-3\)
=> \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{-3}{-10}=\frac{3}{10}\)
Cho phương trình \(x^2+3x-10=0\)
Không giải phương trình
a/ Chứng minh phương trình có 2 nghiệm phân biêtn x1. x2. Tìm tổng và tich x1, x2
b/ Tính \(x^2_1+x^2_2\)
\(\frac{1}{x_1}+\frac{1}{x_2}\)
\(\frac{2x_1^2}{x_1+x_2}+2x_2\)
Cho phương trình : \(x^2-7x+3=0\) có 2 nghiệm x1, x2:
Lập phương trình bậc 2 có 2 nghiệm là :
\(\frac{1}{x_1}+\frac{1}{x_2};\frac{x_1}{x_2}+\frac{x_2}{x_1}\)
Cho phương trình: \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\)có 2 nghiệm x1,x2 thỏa mãn:\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{2}\left(x_1+x_2\right)\). Tìm m
1sp cho câu trả lời đúng nha mn!!!
Cho phương trình \(x^2+ax+1=0\). Xác định a để phương trình có 2 nghiệm \(x_1,x_2\)thỏa mãn \(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}\ge7\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Ta có : \(\Delta=a^2-4\)
Để phương trình có hai nghiệm thì \(\Delta\ge0\Rightarrow a^2-4\ge0\Rightarrow\orbr{\begin{cases}a\ge2\\a\le-2\end{cases}}\)
Theo hệ thức vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=1\end{cases}}\)
\(\frac{x^2_1}{x^2_2}\)\(+\frac{x^2_2}{x^2_1}\)
\(\Leftrightarrow x^4_1+x^4_2\ge7\)
\(\Leftrightarrow x^4_1+2x^2x^2_2+x^4_2\ge9\)
\(\Leftrightarrow\left(x^2_1+x^2_2\right)\ge9\)
\(\Leftrightarrow x^2_1+x^2_2\ge3\)
\(\Leftrightarrow\left(x_1+x_2\right)-2x_1x_2\ge3\)
\(\Leftrightarrow a^2\ge5\)
\(\Leftrightarrow\orbr{\begin{cases}a\ge\sqrt{5}\\a\le-\sqrt{5}\end{cases}}\)
Vậy a thỏa mãn .......
Cho phương trình \(x^2-2x+m+2=0\) . Xác định m để phương trình có 2 nghiệm \(x_1,x_2\)thõa.
a) \(x_1^2+x_2^2=10\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-10}{3}\)
c) \(x_2-x_1=2\)
d) \(x_1^2.x_2^2-\left(x_1^2+x_2^2\right)=2x_1x_2-5\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2+\)3=0
Định m để phương trình có 2 nghiệm x1, x2 thỏa \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1x_2}\)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)
= 4(m + 1)2 - 4m2 - 12
= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8
Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0
<=> 8(m - 1) \(\ge\) 0
<=> m -1 \(\ge\)0
<=> m \(\ge\) 1
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)
Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)
ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\)
<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)
=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)
<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)
Hay (2m + 2)2 - 2(m2 + 3) = 8
<=> 4m2 + 8m + 4 - 2m2 - 6 = 8
<=> 2m2 + 8m - 10 = 0
a + b + c = 2 + 8 + (-10) = 0
=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)
Vậy m = 1 thì ....
cho phương trình x2+2(m-2)x+m2-2m+4=0
Tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thỏa mãn \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
Để PT có 2 nghiệm phân biệt thì
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow m< 0\)
Theo vi et ta có:
\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)
Theo đề bài thì
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)
Với m < 0 thì VP > 0
Vậy không tồn tại m để thỏa bài toán.