Những câu hỏi liên quan
AN
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
JN
26 tháng 9 2018 lúc 8:46

e ko bt

Bình luận (0)
LM
Xem chi tiết
NT
29 tháng 5 2022 lúc 15:33

a: \(4x^2\left(3x^{n+1}-2x^n\right)\)

\(=4x^2\cdot3x^{n+1}-4x^2\cdot2x^n\)

\(=12x^{n+3}-8x^{n+2}\)

b: \(2\left(x^{2n}+2x^ny^n+y^{2n}\right)-y^n\left(4x^n+2y^n\right)\)

\(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)

\(=2x^{2n}\)

c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)

\(=x^{6n}-y^{6n}\)

d: \(=4^n\cdot4-3\cdot4^n=4^n\)

Bình luận (0)
VN
29 tháng 5 2022 lúc 16:32

a: 4x2(3xn+1−2xn)4x2(3xn+1−2xn)

=4x2⋅3xn+1−4x2⋅2xn=4x2⋅3xn+1−4x2⋅2xn

=12xn+3−8xn+2=12xn+3−8xn+2

b: 2(x2n+2xnyn+y2n)−yn(4xn+2yn)2(x2n+2xnyn+y2n)−yn(4xn+2yn)

=2x2n+4xnyn+2y2n−4xnyn−2y2n=2x2n+4xnyn+2y2n−4xnyn−2y2n

=2x2n=2x2n

c: =(x3n−y3n)(x3n+y3n)=(x3n−y3n)(x3n+y3n)

=x6n−y6n=x6n−y6n

d: =4n⋅4−3⋅4n=4n

Bình luận (0)
ZT
Xem chi tiết
NA
26 tháng 12 2020 lúc 14:25

a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2

b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

Phần c nản quá.

Bình luận (0)
 Khách vãng lai đã xóa
ZT
Xem chi tiết
XO
25 tháng 12 2020 lúc 23:30

a) 2x(x + y) - y(y + 2x) 

= 2x2 + 2xy - y2 - 2xy

= 2x2 - y2

b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)

\(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
15 tháng 5 2016 lúc 9:54

a/ (\(x^3y^2\)-\(\frac{1}{2}x^3y\) + \(2xy\) - \(2x^2y^3\) + \(xy^2\) - \(4y^2\) = 

Bình luận (0)
VC
Xem chi tiết
NL
Xem chi tiết
HN
11 tháng 6 2016 lúc 14:39

\(y=\frac{x^n+\frac{1}{x^n}}{x^n-\frac{1}{x^n}}=\frac{x^{2n}+1}{x^{2n}-1}\)

Xét \(y^2+1=\left(\frac{x^{2n}+1}{x^{2n}-1}\right)^2+1=\frac{x^{4n}+2x^{2n}+1}{x^{4n}-2x^{2n}+1}+1=\frac{2\left(x^{4n}+2\right)}{x^{4n}-2x^{2n}+1}\)

\(\Rightarrow\frac{y^2+1}{2y}=\frac{2\left(x^{4n}+1\right)}{x^{4n}-2x^{2n}+1}.\frac{x^{2n}-1}{2\left(x^{2n}+1\right)}=\frac{x^{4n}+1}{\left(x^{2n}-1\right)^2}.\frac{x^{2n}-1}{x^{2n}+1}=\frac{x^{4n}+1}{x^{4n}-1}=\frac{\frac{x^{4n}+1}{x^{2n}}}{\frac{x^{4n}-1}{x^{2n}}}=\frac{x^{2n}+\frac{1}{x^{2n}}}{x^{2n}-\frac{1}{x^{2n}}}\)

Bình luận (0)
HN
11 tháng 6 2016 lúc 14:39

Bạn thêm điều kiện x khác 0 nữa nhé

Bình luận (0)