Những câu hỏi liên quan
NN
Xem chi tiết
H24
Xem chi tiết
NN
28 tháng 7 2017 lúc 21:32

cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự 

vì căn 2 là số vô tỉ 

vì cắn 3 là số vô tỉ 

và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ 

Bình luận (0)
TM
Xem chi tiết
DL
Xem chi tiết
HN
Xem chi tiết
CL
Xem chi tiết
KS
7 tháng 9 2016 lúc 15:01
Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

Bình luận (0)
KS
7 tháng 9 2016 lúc 15:03
Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

tích mik nha

Bình luận (0)
H24
5 tháng 10 2016 lúc 16:06

Cho tam giác ABC vuông tại A,đường cao AH.Gọi E,F lần lượt là trung điểm AHvà BH,CE cắt AF tại I. Chứng minh AF vuông góc với CE

Bình luận (0)
NC
Xem chi tiết
LL
Xem chi tiết
TM
27 tháng 2 2021 lúc 12:46

# TK:

cach1

Bình luận (0)
PT
27 tháng 2 2021 lúc 12:49

Giả sử √2 không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √2 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√2 )2 = (a/b)2 hay a2=2b2 (1)

Kết quả trên chứng tỏ a là số chẵn, nghĩa là ta có a = 2c với c là số nguyên.

Thay a = 2c vào (1) ta được: (2c)2=2b2 hay b2=2c2

Kết quả trên chứng tỏ b phải là số chẵn.

Hai số a và b đều là số chẵn, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √2 là số vô tỉ.

Bình luận (0)
AL
27 tháng 2 2021 lúc 12:58

Giả sử √2 là số hữu tỉ thì nó viết được dưới dạng :

m/n với m, n thuộc N, (m, n)=1

Do 2 không là số chính phương nên m/n không là số tự nhiên, do đó n>1

Ta có m2=2n2. Gọi p là ước nguyên tố nào đó của n, thế thì m2 chia hết cho p 

=> m chia hết cho p.

=> p là ước nguyên tố của m và n (trái với (m, n) =1)

=>√2 ko là số hữu tỉ 

=>√2 là số vô tỉ.

Bình luận (0)
ND
Xem chi tiết