\(CMR:3^{2n+2}+2^{6n+1}⋮11\forall n\inℕ^∗\)
cmr,\(\forall n\inℕ\)
a) \(2^{2^{4n+1}}+7⋮11\)
b)\(2^{2^{6n+2}}+3⋮19\)
(dung định lí Fermat )
CMR: \(2^{2^{6n+2}}+13⋮29\forall n\inℕ^∗\)
\(2^{2^{6n+2}}+13⋮29\)
\(\Leftrightarrow4^{6n+2}+13⋮29\)
\(\Leftrightarrow16^{3n+1}+13⋮29\)
\(\Leftrightarrow\left(16+13\right)\left(3^n....+1\right)⋮29\left(dpcm\right)\)
Bài 1 : .CMR tổng của 3 số chính phương liên tiếp không là số chính phương
Bài : 2. CMR :
a)7 . 52n + 12 . 6n \(\forall n\inℕ\)
b) 22n + 5 \(⋮\)7 \(\forall n\inℕ\)
Lưu ý : Bài 2 áp dụng tính chất đồng dư thức
ha tuan anh
Trả lời đc rồi hãng nói đến t i c k
Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à
và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá
Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi
Ko cho ra đc lời giải thì thôi đừng tl làm j cả
Bằng phương pháp quy nạp để :\(CMR:\forall n\inℕ^∗\)
\(a,n^5-n⋮5\)
\(b,6^{2n}+3^{n+2}+3^n⋮11\)
Ta co n^2 chia 5 du 1 hoac du 4
=>n^4 chia 5 du 1 hoac du 4
\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)
Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)
Vay n^5-n chia het cho 5
CMR \(\left(x+1\right)^{2n+1}+x^{n+2}⋮x^2+x+1\forall x\inℕ^∗\)
CMR ∀ n ∈ N thì 32n+2 + 26n+1 ⋮ 11.
Các bn nhớ làm đầy đủ, phân tích kq cuối cùng,lưu ý phải thử lại.
Mình sẽ tick cho bn nào nhanh nhất , chính xác nhất nhé.
CMR \(\forall\)n \(\in\)N thì 32n+2 + 26n+1 \(⋮\)11.
Các bn giải đầy đủ, phân tích kết quả cuối cùng và lưu ý nhớ thử lại.
Mình sẽ tick cho bn nào nhanh nhất, kq đúng nha
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
(8x-3)2n=52n(\(\forall n\inℕ\))
\(\left(8x-3\right)^{2n}=5^{2n}\)
Do 2n chẵn
\(\Rightarrow\hept{\begin{cases}8x-3=5\\8x-3=-5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}\)