Bài 1 : .CMR tổng của 3 số chính phương liên tiếp không là số chính phương
Bài : 2. CMR :
a)7 . 52n + 12 . 6n \(\forall n\inℕ\)
b) 22n + 5 \(⋮\)7 \(\forall n\inℕ\)
Lưu ý : Bài 2 áp dụng tính chất đồng dư thức
CMR \(\forall\)n \(\in\)N thì 32n+2 + 26n+1 \(⋮\)11.
Các bn giải đầy đủ, phân tích kết quả cuối cùng và lưu ý nhớ thử lại.
Mình sẽ tick cho bn nào nhanh nhất, kq đúng nha
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
CMR 3^2n+2 + 2^6n+1 chia hết cho 11
CMR
a, n(n + 1) (2n + 1) \(⋮\)6
b, n5 - 5n3 + 4n \(⋮\)120 \(\forall\)n \(\in\)N
c, n4 + 6n3 + 11n2 + 6n \(⋮\)24 \(\forall\)n \(\in\)Z
CMR :A =11n+2+122n+1 \(⋮133,\forall n\in N\)
1. Tìm tất cả \(n\inℕ\)sao cho \(n^2+17\)là một số chính phương
2. CMR: \(\forall n\inℕ\), ta có \(n^2+n+2\)không chia hết cho \(3\)
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
M có phải là số chính phương không, biết:
M = 1 + 3 + 5 + ... + ( 2n - 1 ) (Với\(\forall n\inℕ,n\ne0\))