Những câu hỏi liên quan
LC
Xem chi tiết
KN
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Bình luận (0)
 Khách vãng lai đã xóa
PQ
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Bình luận (0)
 Khách vãng lai đã xóa
PQ
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
HF
25 tháng 7 2020 lúc 12:08

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

Bình luận (0)
 Khách vãng lai đã xóa
PQ
25 tháng 7 2020 lúc 12:14

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
25 tháng 7 2020 lúc 19:59

ta sẽ giết ngươi kí tên dép đờ kiu lờ

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NR

a,b,c khong am nen (ab+bc+ca)...>=9/4 co the dung don bien nhe ban

con cau tra loi thi khong bit

Bình luận (0)
NK
10 tháng 8 2019 lúc 16:37

nguyễn xuân trợ: bớt xàm đi bạn, cái bạn hỏi đã bảo chúng ta dùng phương pháp dồn biến rồi nha!

Bình luận (0)
GL
10 tháng 8 2019 lúc 21:54

Dồn biến làm gì , dùng Chebyshev với Nesbit là ra :)

Giả sử \(a\ge b\ge c\)\(\Rightarrow\hept{\begin{cases}a+b\ge a+c\ge b+c\\a\left(b+c\right)\ge b\left(a+c\right)\ge c\left(a+b\right)\end{cases}}\)

\(BĐT\Leftrightarrow\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+\frac{1}{\left(b+c\right)^2}\right)\)

ÁP DỤNG BĐT CHEBYSHEV\(BĐT\ge3\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge\frac{9}{2}\)(áp dụng bđt Nesbit) "chứng minh dùng AM-GM"

Bình luận (0)
TQ
Xem chi tiết
H24
18 tháng 12 2018 lúc 21:28

Trời ! Sao trên đời này có nhiều đứa ngu quá vậy ?

Bình luận (0)
H24
18 tháng 12 2018 lúc 21:30

Trời ! Sao trên đời này có nhiều người chảnh quá vậy ?

Bình luận (0)
NH
18 tháng 12 2018 lúc 21:32

https://toanmath.com/2016/07/ki-thuat-su-dung-bat-dang-thuc-co-si-nguyen-cao-cuong.html

Bình luận (0)
LD
Xem chi tiết
LL
10 tháng 7 2017 lúc 11:19

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)

Bình luận (0)
MM
Xem chi tiết
TN
25 tháng 3 2020 lúc 11:07
https://i.imgur.com/bx8s8Hy.jpg
Bình luận (0)
 Khách vãng lai đã xóa
TN
25 tháng 3 2020 lúc 11:07
https://i.imgur.com/AISWXxC.jpg
Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
DT
Xem chi tiết
MA
Xem chi tiết
TN
14 tháng 7 2017 lúc 21:54

Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)