Những câu hỏi liên quan
LD
Xem chi tiết
PH
28 tháng 12 2016 lúc 10:09

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

Bình luận (0)
H24
27 tháng 12 2016 lúc 18:34

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

Bình luận (0)
DN
Xem chi tiết

hoc tot de lam lien doi nho chua.

Bình luận (0)
H24
7 tháng 4 2018 lúc 15:18

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

Bình luận (0)
H24
7 tháng 4 2018 lúc 15:30

\(B=x^2-2xy+2y^2+2x-10y+17\)

\(B=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]-8y+y^2+16\)

\(B=\left(x-y+1\right)^2+\left(y^2-8y+16\right)\)

\(B=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà \(\left(x-y+1\right)^2\ge0\forall x;y\)

       \(\left(y-4\right)^2\ge0\forall y\)

\(\Rightarrow B\ge0\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy Min B = 0 khi (x;y)=(3;4)

Bình luận (0)
MA
Xem chi tiết
NL
Xem chi tiết
ND
21 tháng 2 2020 lúc 9:27

A = x2 + 2y2 - 2xy + 2x - 2y + 1

= x2 - 2xy + y2 + 2 ( x - y ) + 1 + y2

= ( x - y )2 + 2 ( x - y ) + 1 + y2

= ( x - y + 1 )2 + y2 ≥ 0

Dấu = xảy ra khi :

\(\left\{{}\begin{matrix}x-y+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

B = x2 + 2y2 - 2xy + 2x - 10y

= x2 - 2xy + y2 + 2x - 2y + 1 + y2 - 8x + 16 - 17

= ( x - y )2 + 2 ( x - y ) + 1 + ( y - 4 )2 - 17

= ( x - y + 1 )2 + ( y - 4 )2 - 17 ≥ - 17

Dấu = xảy ra khi :

\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
H24
Xem chi tiết
AN
5 tháng 8 2016 lúc 11:00
GTNN là -17 khi x=3;y=4
Bình luận (0)
H24
29 tháng 9 2017 lúc 17:34

Ta thấy x2x2 và y2y2 luôn lớn hơn hoặc bằng 0 với mọi x

Nên để A đạt GTNN thì x = 0 và y = 0, do đó A = 0 + 0 - 0 + 0 - 0 = 0

Vậy Min A = 0

Còn cách khác nữa như sau :

Nhập biểu thức vào máy : 2x + 4y - 2xy + 2x - 10y = 0 SHIFT SOLVE

     Y? 0 =

Solve for X? 0 =

KQ ra Solve x = 0

Vậy Min A = 0 khi x = 0 và y = 0.

Bình luận (0)
KV
29 tháng 9 2017 lúc 18:37

Bexiu ???

Bình luận (0)
OO
Xem chi tiết
DV
Xem chi tiết
KK
7 tháng 4 2018 lúc 13:35

A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(x2-2x+1)+2

= (x-y)2+(x-1)2 +2

do (x-y)2 ≥ 0 ∀ x,y

(x-1)2 ≥ 0 ∀ x

=> (x-y)2+(x-1)2 +2 ≥ 2

=> A ≥ 2

nimA=2 dấu "=" xảy ra khi

x-y=0

x-1=0

=> x=y=1

vậy nimA =2 khi x=y=1

Bình luận (0)
NM
Xem chi tiết