Những câu hỏi liên quan
DA
Xem chi tiết
H24
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:12

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Bình luận (1)
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 7:42

a) Thay x = -2 vào phương trình đã cho ta được:

-8 + 4 – 2m – 4 = 0 ⇔ -2m = 8 ⇔ m = -4

b) Với m = -4, ta có phương trình:

x3 + x2 – 4x – 4 = 0 ⇔ x2(x + 1) – 4(x + 1) = 0

⇔ (x + 1)(x2 – 4) = 0 ⇔ (x + 1)(x – 2)(x + 2) = 0

⇔ x + 1 = 0 hoặc x – 2 = 0 hoặc x + 2 = 0

⇔ x = -1 hoặc x = 2 hoặc x = -2

Tập nghiệm của phương trình: S = {-1; 2; -2}.

Bình luận (0)
PU
Xem chi tiết
NT
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Bình luận (0)
HL
Xem chi tiết
NH
10 tháng 8 2016 lúc 15:04

Hỏi đáp Toán

Bình luận (0)
NA
Xem chi tiết
PD
20 tháng 3 2018 lúc 12:22

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

Bình luận (0)
HN
Xem chi tiết
NT
24 tháng 5 2022 lúc 20:56

a: Khi m=9 thì phương trình trở thành:

\(2x^2-19x+39=0\)

\(\Leftrightarrow2x^2-6x-13x+39=0\)

=>(x-3)(2x-13)=0

=>x=13/2 hoặc x=3

b: \(\text{Δ}=\left(2m+1\right)^2-4\cdot2\cdot\left(m^2-9m+39\right)\)

\(=4m^2+4m+1-8m^2+72m-312\)

\(=-4m^2+76m-311\)

\(=-\left(4m^2-76m+361-50\right)\)

\(=-\left(2m-19\right)^2+50\)

Để phương trình có hai nghiệm thì \(-\left(2m-19\right)^2+50>=0\)

\(\Leftrightarrow-\left(2m-19\right)^2>=-50\)

\(\Leftrightarrow\left(2m-19\right)^2< =50\)

hay \(\dfrac{-5\sqrt{2}+19}{2}< =m< =\dfrac{5\sqrt{2}+19}{2}\)

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1x_2=\dfrac{m^2-9m+39}{2}\end{matrix}\right.\)

Đến đây bạn chỉ cần kết hợp cái x1+x2 và x1=2x2 để lập hệ phương trình, xong sau đó bạn chỉ cần thay vào cái tích rồi tìm m là xong

Bình luận (0)
TN
Xem chi tiết
VT
Xem chi tiết