Những câu hỏi liên quan
H24
Xem chi tiết
TD
14 tháng 7 2016 lúc 22:32

\(\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

\(ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(a\left(b+d\right)+a^2=c\left(b+d\right)+c^2\)

\(a+a^2=c+c^2\)

\(a=c\)

Bình luận (0)
NT
Xem chi tiết
U7
Xem chi tiết
VT
29 tháng 8 2016 lúc 9:35

Từ : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Theo tính chất của dãy tỉ số bằng nhau , ta có :

 \(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b-b-c}{a+d-d-a}=\frac{a-c}{c-a}\)

Nếu \(a-c=0\) thì \(a=c\)

Nếu : \(a-c\ne0\) thì \(\frac{a+b}{c+d}=-1\Rightarrow a+b=-c-d\Rightarrow a+b+c+d=0\)

Bình luận (0)
NT
25 tháng 6 2019 lúc 10:32

làm ơn giúp mình bài toán hình phần d với cảm ơn nhiềueoeo

Bình luận (0)
DH
Xem chi tiết
DH
11 tháng 3 2017 lúc 20:20

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)

Bình luận (0)
DH
11 tháng 3 2017 lúc 20:24

cảm ơn nhé

Bình luận (0)
VH
Xem chi tiết
NP
6 tháng 11 2016 lúc 16:46

a=?

Bình luận (2)
NP
6 tháng 11 2016 lúc 16:53

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

=> a2+ab+ad+db=cb+c2+db+dc

=> a2+ab+ad+db-cb-c2-db-dc=0

=>( a2-c2) + (ab -bc) +( ad -dc)=0

=>(a+c)(a-c) +b(a-c) +d(a-c)=0

=>(a-c)(a+c+b+d)=0

=>\(\left[\begin{array}{nghiempt}a-c=0\\a+b+c+d=0\end{array}\right.\)

=>\(\left[\begin{array}{nghiempt}a=c\\a+b+c+d=0\end{array}\right.\)

Bình luận (0)
NS
6 tháng 11 2016 lúc 18:29

đề như đệt

Bình luận (0)
DT
Xem chi tiết
HT
Xem chi tiết
ST
15 tháng 7 2017 lúc 12:35

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
ER
15 tháng 7 2017 lúc 12:45

ta có a+b/a-b=c+d/c-d

suy ra (a+b)(c-d)=(a-b)(c+d)

ac-ad+bc-bd=ac+ad-bc-bd

ac-ac+bc+bc-bd+bd=ad+ad

2bc=2ad 

nen bc=ad=a/b=c/d

vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d

Bình luận (0)
LL
Xem chi tiết
TD
25 tháng 10 2017 lúc 19:18

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Bình luận (0)
SH
Xem chi tiết
NA
6 tháng 10 2019 lúc 21:47

ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

=>(a+b)(a+d)=(b+c)(c+d)

=> a2 + ab+ad+bd=bc+c2+bd+cd

=>a2+ab+ad-bc-c2-cd=0

=>(a2-c2)+(ad-cd)+(ab-bc)=0

=>(a-c)(a+c)+d(a-c)+b(a-c)=0

=>(a-c)(a+b+c+d)=0

\(\rightarrow\orbr{\begin{cases}a-c=0\rightarrow a=c\\a+b+c+d=0\end{cases}}\)(đpcm)

Vậy...

chúc bn hc tốt

Bình luận (0)
OT
6 tháng 10 2019 lúc 21:54

Ta có : a+b/b+c=c+d/d+a

=> (a+b)/(c+d) = (b+c)/(d+a)

=> (a+b)/(c+d)+1=(b+c)/(d+a)+1

hay (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)

*TH1 a+b+c+d khác 0 thì c+d=d+a => a=c (1)

*TH2 a+b+c+d=0 (2)

Từ (1) và (2) => a+b+c+d=0 và a=c (đpcm)

Bình luận (0)
H24
7 tháng 3 2020 lúc 18:27

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa