Những câu hỏi liên quan
TT
Xem chi tiết
DN
Xem chi tiết
H24
2 tháng 9 2017 lúc 12:14

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
H24
Xem chi tiết
BD
14 tháng 5 2021 lúc 15:46

2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a)  (AM-GM)

     =4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2)  (AM-GM)

                                =36 (do a2+b2=2)

=> M \(\le\)18

 Dấu bằng có <=> a=b=1

Bình luận (2)
LH
Xem chi tiết
H24
Xem chi tiết
NV
9 tháng 1 2021 lúc 19:29

Ta có : \(M=\dfrac{1}{a+b^2}+\dfrac{1}{b+a^2}=\dfrac{a+1}{\left(a+b^2\right)\left(a+1\right)}+\dfrac{b+1}{\left(b+1\right)\left(b+a^2\right)}\le\dfrac{a+1}{\left(a+b\right)^2}+\dfrac{b+1}{\left(a+b\right)^2}=\dfrac{1}{a+b}+\dfrac{2}{\left(a+b\right)^2}\le\dfrac{1}{2}+\dfrac{2}{4}=1\)đẳng thức xả ra khi và chỉ khi a=b=1. Do đó GTLN của M là 1.

Bình luận (0)
NC
Xem chi tiết
TT
Xem chi tiết
NT
20 tháng 6 2019 lúc 19:03

\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{a^2b^2}{\left(a^2b^2+1\right)\left(a^2+b^2\right)}\le\frac{ab}{2\left(a^2b^2+1\right)}=\frac{1}{2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)}\)

\(A\le\frac{1}{2\left(\frac{1}{2}+\frac{15}{16.\frac{1}{4}}\right)}=\frac{2}{17}\)

Bình luận (0)
TT
21 tháng 6 2019 lúc 8:15

cảm ơn bạn

Bình luận (0)
DD
Xem chi tiết
DH
3 tháng 5 2018 lúc 17:42

Ta có :

\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)

\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)

\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)

Bình luận (0)
NT
Xem chi tiết