Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
AB
Xem chi tiết
NQ
3 tháng 12 2017 lúc 21:10

M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12

Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1

Vậy GTLN của M = 12 <=> x  = -1

k mk nha

Bình luận (0)
PT
3 tháng 12 2017 lúc 21:10

\(M=-3x^2-6x+9\)

\(=\left(-3x^2-6x-3\right)+12\)

\(=12-3\left(x^2+2x+1\right)\)

\(=12-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow M\le12\)

Dấu = xảy ra khi \(\left(x+1\right)^2=0\)

                            \(\Rightarrow x+1=0\)

                             \(\Rightarrow x=-1\)

Vậy \(M_{Max}=12\Leftrightarrow x=-1\)

Bình luận (0)
AB
4 tháng 12 2017 lúc 21:39

bạn Phạm Trung Thành thiếu 12-3(x+1)2

Bình luận (0)
PT
Xem chi tiết
LA
26 tháng 10 2014 lúc 11:01

A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1 

B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2 

Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24

Bình luận (0)
TH
20 tháng 7 2016 lúc 15:23

cại đcm may

Bình luận (0)
NT
Xem chi tiết
AN
8 tháng 11 2016 lúc 22:47

Ta có \(\frac{1}{3x-2\sqrt{6x}+5}=\frac{1}{\left(\left(\sqrt{3x}\right)^2-2.\sqrt{3x}.\sqrt{2}+2\right)+3}\)

\(=\frac{1}{\left(\sqrt{3x}-\sqrt{2}\right)^2+3}\le\frac{1}{3}\)

Vậy GTLN là \(\frac{1}{3}\)đạt được khi x = \(\frac{2}{3}\)

Bình luận (0)
G2
9 tháng 11 2016 lúc 5:05

x=2/3

Bình luận (0)
H24
Xem chi tiết
H24
29 tháng 2 2020 lúc 15:23

Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhNguyễn Lê Phước ThịnhAkai HarumaPhạm Lan HươngHoàng Thị Ánh Phương Phạm Thị Diệu HuyềnVũ Minh TuấnTrên con đường thành công không có dấu chân của kẻ lười biếng

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
BM
Xem chi tiết
SC
17 tháng 3 2019 lúc 22:15

ta có:

\(\left(3x-2y\right)^2\)>  0

\(\left(4y-6x\right)^2\)> 0

\(\left|xy-24\right|\)>    0

dấu "=" xảy ra (=)

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\left(=\right)\hept{\begin{cases}3x-2y=0\\4y-6x=0\\xy-24=0\end{cases}}\)\(\)còn lại mk chưa tính ra

Bình luận (0)
BM
17 tháng 3 2019 lúc 22:17

bạn ơi nếu làm thế này là sai đó,các biến ở các hạnh tử giống nhau mà

Bình luận (0)
TT
4 tháng 3 2020 lúc 16:15

Ta thấy : \(-\left(3x-2y\right)^2\le0\forall x,y\)

\(-\left(4y-6x\right)^2\le0\forall x,y\)

\(-\left|xy-24\right|\le0\forall x,y\)

\(\Rightarrow-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|\le0\forall x,y\)

\(\Leftrightarrow-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|+2019\le2019\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}3x=2y\\xy=24\end{cases}}\) 

Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}=k\) \(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)

Khi đó : \(xy=2k\cdot3k=6k^2=24\)

\(\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

Với \(k=-2\Rightarrow\hept{\begin{cases}x=-4\\y=-6\end{cases}}\) ( thỏa mãn )

Với \(k=2\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\) ( thỏa mãn )

Vậy : GTLN của \(-\left(3x-2y\right)^2+\left(4y-6x\right)^2+\left|xy-24\right|+2019=2019\) tại \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NV
15 tháng 3 2017 lúc 20:31

Ta có: \(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}\)

\(\Rightarrow\) 24 . (1 + 2y) = 18 . (1 + 4y)

\(\Rightarrow\) 24 + 48y = 18 + 72y

\(\Rightarrow\) 24 - 18 = 72y - 48y

\(\Rightarrow\) 6 = 24y

\(\Rightarrow\) y = \(\dfrac{1}{4}\)

Thay y = \(\dfrac{1}{4}\) ta có:

\(\dfrac{1+1}{24}=\dfrac{1+\dfrac{3}{2}}{6x}\)

\(\Rightarrow\) \(\dfrac{1}{12}=\dfrac{\dfrac{5}{2}}{6x}\)

\(\Rightarrow\) \(6x=\dfrac{5}{2}.12\)

\(\Rightarrow\) \(6x=30\)

\(\Rightarrow\) \(x=5\)

Vậy x = 5 và y = \(\dfrac{1}{4}\)

Bình luận (0)