Những câu hỏi liên quan
ST
Xem chi tiết
NP
Xem chi tiết
TD
20 tháng 11 2017 lúc 20:09

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

cộng 1 vào mỗi tỉ số,ta được :

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; b + c = -a ; a + c = -b

\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

xét a + b + c khác 0 \(\Rightarrow\)b + c = a + c = a + b \(\Rightarrow\)a = b = c

\(\Rightarrow P=2+2+2=6\)

Bình luận (0)
NQ
20 tháng 11 2017 lúc 20:08

Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2

=> P = 2+ 2 + 2  =6

k mk nha

Bình luận (0)
NH
21 tháng 11 2017 lúc 20:26

câu này = 6

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 10 2019 lúc 20:25

 \(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)\(=\frac{c+a-b}{b}\)

=> \(\frac{a+b}{c}-1=\frac{b+c}{a}-1\)\(=\frac{c+a}{b}-1\)

=>\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

Xét 2 trường hợp

+) Nếu a+b+c \(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(vì a+b+c \(\ne\)0)

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c +a=2b\end{cases}}=>a=b=c\)\(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)=> \(a=b=c\)

Thay vào B => B=\(\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\)=2.2.2= 8

+) Nếu a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)Thay vào B

B=\(\left(1+\frac{-\left(a+c\right)}{a}\right)\)\(\left(1+\frac{-\left(b+c\right)}{c}\right)\)\(\left(1+\frac{-\left(a+b\right)}{b}\right)\)

=>B= \(\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)( Vì a,b,c \(\ne\)0 nên abc\(\ne\)0)

Vậy B= 8 nếu a+b+c khác 0 ; B=-1 nếu a+b+c =0

Bình luận (0)
NT
12 tháng 10 2019 lúc 20:44

Xin lỗi bạn mk thiếu ở trường hợp 1

=>\(\hept{\begin{cases}a+b=2c\\c+b=2a\\a+c=2b\end{cases}}\)=>\(a=b=c\)

Bình luận (0)
NT
Xem chi tiết
TD
23 tháng 4 2019 lúc 20:30

xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b

Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )

Vậy A = -1

Bình luận (0)
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
OY
13 tháng 11 2021 lúc 13:53

Ta có: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}\left(1\right)\)

\(\dfrac{c}{a+b}=\dfrac{b}{a+c}\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}\left(2\right)\)

Từ (1), (2) \(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+b}{c}=\dfrac{a+c}{b}\)

Bình luận (0)
LT
Xem chi tiết
NP
13 tháng 11 2021 lúc 18:07

a+b−cc=b+c−aa=c+a−bb

 

⇒a+b−cc+1=b+c−aa+1=c+a−bb+1

 

⇒a+bc=b+ca=c+ab

 

+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b

 

⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1

 

Nếu a+b+c≠0

 

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2

 

⇒a+b=2c

 

      b+c=2a

 

       c+a=2b

 

⇒B=2ca.2bc.2ab=2.2.2=8

Bình luận (0)
LD
Xem chi tiết
ND
25 tháng 6 2021 lúc 19:01

Ta có: \(a^2-b=b^2-c\Leftrightarrow a^2-b^2=b-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\Rightarrow a+b=\frac{b-c}{a-b}\)

Tương tự CM được: \(b+c=\frac{c-a}{b-c}\) và \(c+a=\frac{a-b}{c-a}\)

Khi đó:

\(\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)

\(=\left(\frac{a-b}{c-a}+1\right)\left(\frac{c-a}{b-c}+1\right)\left(\frac{b-c}{a-b}+1\right)\)

\(=\frac{c-b}{c-a}\cdot\frac{b-a}{b-c}\cdot\frac{a-c}{a-b}=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
XO
25 tháng 6 2021 lúc 15:29

Vì a2 - b = b2 - c = c2 - a

Ta có a2 - b = b2 - c

=> (a - b)(a + b) = b - c

=> a + b + 1 = \(\frac{a-c}{a-b}\)

Tương tự ta có : b + c + 1 = \(\frac{b-a}{b-c}\)

a + c + 1 =\(\frac{b-c}{a-c}\)

Khi đó (a + b + 1)(b + c + 1)(a + c + 1) = \(\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{b-c}{a-c}=-1\)(đpcm) 

Bình luận (0)
 Khách vãng lai đã xóa