Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC ( H thuộc BC); kẻ HE vuông góc AB, HF vuông góc AC ( E thuộc AB, F thuộc AC ). Chứng minh:
a) tam giác ABH bằng tam giác ACH
b) AH là tia phân giác của góc A
c) HB = HC
d) tam giác AEH bằng tam giác AFH
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC(H thuộc BC) .Từ H kẻ HD vuông góc AB(D thuộc BC),từ H kẻ HE vuông góc AC(E thuộc AC) .chứng minh tam giác HED là tam giác cân
Cho tam giác ABC vuông tại A . Phân giác BD , D thuộc AC . Kẻ DE vuông góc BC , E thuộc BC .
a) Chứng minh tam giác ABD = tam giác EBD
b) Kẻ AH vuông góc BC tại H , H thuộc BC . AH cắt BD tại I . Chứng minh AH // DE và tam giác AID cân
c) Chứng minh AE là phân giác của góc HAC
1. Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC (H thuộc BC)
a) Cm: HB=HC
b) Cm: AH là tia phân giác của góc BAC
c) Kẻ Bx vuông góc với BA, Cy vuông góc với CA. gọi K là giao điểm của hai tia Bx và Cy. Cm tam giác KBC cân tại K
2. Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại H
a) Cm: tam giác AHB= tam giác AHC
b) Cm: AH vuông góc với BC
c) Cho AB=13cm, BC=10cm. Tính AC
Giúp mik với, mik cảm ơn!
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC (H thuộc BC) . Trên cạnh BC lấy điểm E sao cho BE=BA. Kẻ EK vuông góc AC (K thuộc AC). Chứng minh tam giác AHK cân.
cho tam giác ABC vuông tại A . Kẻ AH vuông góc vs BC (H thuộc BC) . Tia phân giác của góc HAC cắt BC tại D. CMR: tam giác ABD là tam giác cân
chị tự kẻ hình :
AH _|_ BC (gt) => góc DHA = 90o (đn)
=> góc ADH + góc DHA + góc DAH = 180 (đl)
=> góc ADH + 90 + góc DAH = 180
=> góc ADH = 180 - 90 - góc DAH
=> góc ADH = 90 - góc DAH (1)
có tam giác ABC vuông tại A (gt)
=> góc DAB + góc CAD = 90
=> góc DAB = 90 - góc CAD (2)
AD là phân giác của góc HAC (gt) => góc CAD = góc DAH (đn) (3)
(1)(2)(3) => góc DAB = góc ADB
=> tam giác ABD cân tại B (dh)
cho tam giác abc cân tại a có ab = ac =5cm bc=8cm kẻ ah vuông góc với bc (H thuộc B) b) Kẻ HD vuông góc với AB (D thuộc AB) ;HE vuông góc với AC (E thuộc AC) . CMR Tam giác HDE là tam giác cân
b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có
BA=CA(ΔBAC cân tại A)
AH chung
Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
câu a đâu rồi bạn ơi ???
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC .(h thuộc bc)
a. Chứng minh: tam giác ahb= tam giác ahc.
b. Từ điểm H kẻ HK vuông góc với AB tại K, HF vuông góc với AC tại F.
Chứng minh: hk=hf.
c. Chứng minh:kf song song bc
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔAKH vuông tại K và ΔAFH vuông tại F có
AH chung
\(\widehat{KAH}=\widehat{FAH}\)
Do đó: ΔAKH=ΔAFH
Suy ra: HK=HF
c: Xét ΔABC có AK/AB=AF/AC
nên KF//BC
Cho tam giác ABC vuông tại A Kẻ AH vuông góc BC(H thuộc BC) Tia phân giác góc HAC cắt BC ở D.CMR Tam giác ABD cân
Ta có Góc BDA + Góc HAD = 90 độ ( 1 )
Lại có Góc BAD + Góc DAC = 90 độ ( 2 )
Mà AD là tia phân giác của góc HAC
->Góc HAD = Góc DAC ( 3 )
Từ ( 1 ) ( 2 ) ( 3 )
->Góc BAD = Góc BDA
Xét tam giác ABD có
Góc BAD = Góc BDA
-> Tam giác ABD là tâm giác cân tại B
Cho tam giác ABC cân tại A . Kẻ AH vuông tại góc với BC ( H thuộc BC )
Chứng minh HB = HC
tham khảo
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng
Xét 2 tam giác vuông ABH và ACH,có: AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH =>HB=HC
Vì tg ABC cân tại A.
=>AB=AC.
Xét tg AHC và tg AHB, có:
AH chung.
góc AHB= góc AHC(=90o)
AB=AC(cmt)
=>tg AHB= tgAHC(ch-cgv)
=>HB=HC(2 cạnh tương ứng)
Cho tam giác ABC cân tại A . Biết AB =AC=5cm , BC=8cm . Kẻ Ah vuông góc vs BC (H thuộc BC ) . a) Tính AH
b) Gọi D và E là chân đường vuông góc kẻ từ H đến AB và AC . C/m tam giác HDE cân .
c) C/m : DE//BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)