Những câu hỏi liên quan
XT
Xem chi tiết
TB
Xem chi tiết
EC
11 tháng 8 2020 lúc 9:14

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4

Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)

b) Với x \(\ge\)0 và x \(\ne\)4, ta có:

P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)

<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)

<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)

<=> \(\frac{-8}{\sqrt{x}-2}>0\)

Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)

mà x \(\ge0\) => 0 \(\le\)\(< \)4

c)Với x \(\ge\)0 và x \(\ne\)4

Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)

<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)

Lập bảng: 

\(\sqrt{x}-2\)      -2 -1 1 2 4 8
   x    0  1 9 16 36 100

Vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
AN
15 tháng 10 2016 lúc 19:30

Mình giải câu a thôi nha b,c,d tương tự

a/ để \(\frac{2}{x-1}\)nguyên thì x - 1 phải là ước nguyên của 2 hay (x - 1) = (-1, 1, -2, 2)

=> x = (0, 2, -1; 3)

Bình luận (0)
G2
22 tháng 12 2016 lúc 6:01

mình chịu

Bình luận (0)
MW
30 tháng 11 2017 lúc 21:49

sử dụng ước số

Bình luận (0)
LN
Xem chi tiết
TD
Xem chi tiết
H24
11 tháng 10 2017 lúc 21:42

ĐK : tự ghi nha

\(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}^3+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\sqrt{x}-1\)

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\frac{x-\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(A=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}-1}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}\)

Bình luận (0)
H24
Xem chi tiết
MT
Xem chi tiết
TH
9 tháng 6 2017 lúc 11:14

Đặt \(\sqrt{x}=a\) , a \(\ge0\) 

a , Khi đó biểu thức trở thành :

Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)

Đến đây làm như lớp 8 thôi

Bình luận (0)
MA
Xem chi tiết
LG
Xem chi tiết
TN
13 tháng 10 2015 lúc 22:53

a/

\(=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)

\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)^2}\)

\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)

 

b/ Vậy để P>1 khi BT trên>1

Ta có phương trình tương đương

\(x-3\sqrt{x}+3-x\sqrt{x}+6\text{x}-9>0\)

\(-x\sqrt{x}+7\text{x}-3\sqrt{x}-6>0\)

Giải pt rồi suy ra

tick cho mình nha

 

 

Bình luận (0)
XT
Xem chi tiết