Những câu hỏi liên quan
TH
Xem chi tiết
MN
29 tháng 3 2016 lúc 20:45

a, S=5 + 52 + 5+...+ 52006

5S= 52 + 5+ 54 +... + 52007

5S-S= 52 + 5+ 54 +... + 52007 - ( 5 + 52 + 5+...+ 52006 )

4S = 52007 -  5

S =(52007 -  5):4

Bình luận (0)
H24
Xem chi tiết
TD
3 tháng 6 2017 lúc 17:13

a) Ta có : S = 5 + 52 + 53 + ... + 52006

5S = 52 + 53 + 5+ ... + 52007

5S - S = ( 52 + 53 + 54 + ... + 52007 ) - ( 5 + 52 + 53 + ... + 52006 )

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

b) Lại có : S = 5 + 52 + 53 + ... + 52006

S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 52003 + 52006 )

S = 5 . ( 1 + 53 ) + 52 . ( 1 + 53 ) + 53 . ( 1 + 53 ) + ... + 52003 . ( 1 + 53 )

S = 5 . 126 + 52 . 126 + 53 . 126 + ... + 52003 . 126

S = 126 . ( 5 + 52 + 53 + ... + 52003 ) \(⋮\)126     ( đpcm )

Bình luận (0)
LD
3 tháng 6 2017 lúc 17:12

Ta có : S = 5 + 5+ 53 + ...... + 52006

=> 5S = 5+ 53 + ...... + 52007

=> 5S - S = 52007 - 5 

=> 4S = 52007 - 5 

=> S = \(\frac{5^{2007}-5}{4}\)

Bình luận (0)
TL
3 tháng 6 2017 lúc 17:19

a)     S = 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 2006

     5.S = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 2007

5.S - S = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 2007 - 5 - 5 ^ 2 - 5 ^ 3 - ... - 5 ^ 2006

     4.S = 5 ^ 2007 - 5

        S = \(\frac{5^{2007}-5}{4}\)

Bình luận (0)
NG
Xem chi tiết
HP
14 tháng 2 2016 lúc 23:26

b, ( 5^1 + 5^4 ) + ( 5^2 + 5^5 ) + .... + ( 5^2003 + 5^2006 ) 
= 5( 1 + 5^3 ) + 5^2( 1 + 5^3 ) + .... + 5^2003( 1 + 5^3 ) 
= 5 . 126 + 5^2 . 126 + .... + 5^2003 . 126 
= 126 ( 5 + .... + 5^2003 ) 
=> chia hết cho 126

Bình luận (0)
HP
14 tháng 2 2016 lúc 23:16

a ) S = 5 + 52 + .... + 52006
5S = 52 + 53 + ..... + 52007
4S = 5S - S = 52007 - 5 
=> S = \(\frac{5^{2007}-5}{4}\)
b thì bạn gộp lại nhé , nếu k giải đk ib cho mình 

Bình luận (0)
NN
2 tháng 2 2017 lúc 19:54

a hi hi thay hay thi cai nha

Bình luận (0)
ND
Xem chi tiết
TT
21 tháng 1 2016 lúc 22:43

a, mình nhân cả hai vế với 5 nha bạn

5S=5(5+5^2+5^3+.............+5^2006)

5S=5^2+5^3+..............+5^2007

5S-S=(5^2+5^3+.......+5^2007)-(5+5^2+.....+5^2006)

4S=5^2007-5

S=(5^2007-5):4

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
KL
13 tháng 1 2015 lúc 10:51

Bạn tham khảo thử nhé :

a)         S= 5 + 52 + 53 + 5+ ............ + 52005 + 52006                                   => 5S=       5+ 5+ 5+ 5+ ............ + 52006 + 52007                            => 5S - S= 52007 - 5                                                                                   => 4S= 52007 - 5                                                                                        =>   S= 52007 - 5       /       4

Mình nghĩ bạn nên xem lại đề câu b đi. Hình như là chứng minh S chia hết cho 156 đó, chứ 126 mình ko làm được. 

 

Bình luận (0)
TN
30 tháng 10 2016 lúc 18:49

a, Ta có 5S = 52 + 53 +54 +………+52007
( 5S –S = (52 + 53 +54 +………+52007) – (5 + 52 + 53 + ………+ 52006)
( 4S = 52007-5
Vậy S = 52002
b, S = (5 + 54) + (52 + 55) +(53 + 56) +……….. + (52003 +52006)
Biến đổi được S = 126.(5 + 52 + 53 +………+ 52003)
Chứng tỏ S chia hết 126.

Bình luận (0)
BM
29 tháng 12 2016 lúc 21:56

đề này thì chào thua

Bình luận (0)
CT
Xem chi tiết
NQ
10 tháng 1 2021 lúc 21:58

Ta có 

\(5S=5^2+5^3+..+5^{2007}=\left(5+5^2+5^3+..+5^{2006}\right)+5^{2007}-5\)

hay \(5S=S+5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

mà 

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)..+\left(5^{2001}+5^{2004}\right)+\left(5^{2005}+5^{2006}\right)\)

hay \(S=126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}+6.5^{2005}\)

mà rõ ràng \(126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}\)chia hết cho 126

còn \(6.5^{2005}\) không chia hết cho 126 nên S không chia hết cho 126.

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
ND
12 tháng 11 2016 lúc 20:25

ko chia hết được bán nhé nên không chứng minh được

Bình luận (0)
DH
12 tháng 11 2016 lúc 20:30

Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

                = 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

                = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )

                = 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126

                = 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126

=> A ⋮ 126 ( đpcm )

Bình luận (0)
NN
30 tháng 1 2019 lúc 21:26

Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

                = 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

                = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )

                = 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126

                = 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126

=> A ⋮ 126 ( đpcm )

Bình luận (0)
TV
Xem chi tiết
YA
15 tháng 12 2016 lúc 9:08

a) \(S=5+5^2+5^3+...+5^{2006}\)

\(5S=5^2+5^3+5^4+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)

\(4S=5^{2007}-5\)

\(S=\frac{5^{2007}-5}{4}\)

b) \(S=5+5^2+5^3+...+5^{2006}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+...+5^{2003}\left(1+5^3\right)\)

\(=5\cdot126+5^2\cdot126+...+5^{2003}\cdot126\)

\(=\left(5+5^2+...+5^{2003}\right)\cdot126\) chia hết cho \(126\)

Vậy \(S\) chia hết cho \(126\)

 

 

Bình luận (0)