Violympic toán 6

TV

Cho S = 5 + 52 + 53 + .............+ 52006

a) tính S

b) chứng minh s chia hết cho 126

 

YA
15 tháng 12 2016 lúc 9:08

a) \(S=5+5^2+5^3+...+5^{2006}\)

\(5S=5^2+5^3+5^4+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)

\(4S=5^{2007}-5\)

\(S=\frac{5^{2007}-5}{4}\)

b) \(S=5+5^2+5^3+...+5^{2006}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+...+5^{2003}\left(1+5^3\right)\)

\(=5\cdot126+5^2\cdot126+...+5^{2003}\cdot126\)

\(=\left(5+5^2+...+5^{2003}\right)\cdot126\) chia hết cho \(126\)

Vậy \(S\) chia hết cho \(126\)

 

 

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
LA
Xem chi tiết
TQ
Xem chi tiết
EC
Xem chi tiết
Xem chi tiết
EC
Xem chi tiết
DX
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết