Những câu hỏi liên quan
AD
Xem chi tiết
H24
31 tháng 8 2016 lúc 21:49

A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)

A=\(\left(x^2+y^2+z^2+1-2xy+2xz-2x+2y-2z\right)+\left(y^2-4y+4\right)+2\left(z^2-2.\frac{3}{2}z+\frac{9}{4}\right)+1998,5\)A=\(\left(x-y+z-1\right)^2+\left(y-2\right)^2+2\left(z-\frac{3}{2}\right)^2+1998,5\)

vậy A min = 1998,5↔\(\begin{cases}x-y+z-1=0\\y-2=0\\z-\frac{3}{2}=0\end{cases}\)\(\begin{cases}x=z=1,5\\y=2\end{cases}\)

(thế wai nào thử lại vẫn sai z,thánh nào cao tay jup vs)

 

Bình luận (0)
TS
Xem chi tiết
TS
Xem chi tiết
H24
3 tháng 8 2017 lúc 21:25

mk chịu

Bình luận (0)
TV
3 tháng 8 2017 lúc 21:29

khó quá

Bình luận (0)
VG
3 tháng 8 2017 lúc 21:45

ta có: A=(x^2 +y^2 +z^2 +2xy+2yz+2xz)+(y^2 +2y+1)+(2.(z^2 +2z+1)=0

=>A=(x+y+z)^2   +  (y+1)^2   +  2.(z+1)^2  =0  (1)

Mà (x+y+z)^2 >=0 ; (y+1)^2 >=0 ; (2.(z+1)^2 >=0   (2)

từ (1),(2) suy ra:

\(\hept{\begin{cases}x+y+z=0\\y+1=0\\z+1=0\end{cases}}\)

=>\(\hept{\begin{cases}x=2\\y=-1\\z=-1\end{cases}}\)

Bình luận (0)
XN
Xem chi tiết
XN
3 tháng 8 2017 lúc 16:58

aai làm được câu ni ko

Bình luận (0)
TM
Xem chi tiết
SP
Xem chi tiết
H24
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Bình luận (0)
TP
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Bình luận (0)
DQ
Xem chi tiết
AQ
Xem chi tiết
PB
20 tháng 8 2019 lúc 17:30

\(A=x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2010\)

\(=x^2-2x\left(y-z+1\right)+\left(y-z+1\right)^2+y^2+2z^2-4y+2yz-6z+2009\)

\(=\left[x-\left(y-z+1\right)\right]^2+y^2-2y\left(2-z\right)+\left(2-z\right)^2-\left(2-z\right)^2+2z^2-6z+2009\)

\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+z^2-2z+2005\)

\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+\left(z-1\right)^2+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+z-1=0\\y-2+z=0\\z-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)

Vậy \(B_{min}=2004\Leftrightarrow x=y=z=1\)

Bình luận (1)
H24
Xem chi tiết